synaptic complexes
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 15)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiao Zhang ◽  
Yao Liu ◽  
Xiaoqi Hong ◽  
Xia Li ◽  
Charles K. Meshul ◽  
...  

AbstractNG2 glia, also known as oligodendrocyte precursor cells (OPCs), play an important role in proliferation and give rise to myelinating oligodendrocytes during early brain development. In contrast to other glial cell types, the most intriguing aspect of NG2 glia is their ability to directly sense synaptic inputs from neurons. However, whether this synaptic interaction is bidirectional or unidirectional, or its physiological relevance has not yet been clarified. Here, we report that NG2 glia form synaptic complexes with hippocampal interneurons and that selective photostimulation of NG2 glia (expressing channelrhodopsin-2) functionally drives GABA release and enhances inhibitory synaptic transmission onto proximal interneurons in a microcircuit. The mechanism involves GAD67 biosynthesis and VAMP-2 containing vesicular exocytosis. Further, behavioral assays demonstrate that NG2 glia photoactivation triggers anxiety-like behavior in vivo and contributes to chronic social defeat stress.


2021 ◽  
Author(s):  
Solange Miele ◽  
Justine Vergne ◽  
Christophe Possoz ◽  
Françoise Ochsenbein ◽  
François-Xavier Barre

ABSTRACTMany mobile elements take advantage of the highly-conserved chromosome dimer resolution system of bacteria, Xer. They participate in the transmission of antibiotic resistance and pathogenicity determinants. In particular, the toxin-linked cryptic satellite phage (TLCΦ) plays an essential role in the continuous emergence of new toxigenic clones of the Vibrio cholerae strain at the origin of the ongoing 7th cholera pandemic. The Xer machinery is composed of two chromosomally-encoded tyrosine recombinases, XerC and XerD. They resolve chromosome dimers by adding a crossover between sister copies of a specific 28 base pair site of bacterial chromosomes, dif. The activity of XerD depends on a direct contact with a cell division protein, FtsK, which spatially and temporally constrains the process. TLCΦ encodes for a XerD-activation factor (XafT), which drives the integration of the phage into the dif site of the primary chromosome of V. cholerae independently of FtsK. However, XerD does not bind to the attachment site (attP) of TLCΦ, which raised questions on the integration process. Here, we compared the integration efficiency of thousands of synthetic mini-TLCΦ plasmids harbouring different attP sites and assessed their stability in vivo. In addition, we compared the efficiency with which XafT and the XerD activation domain of FtsK drive recombination reactions in vitro. Taken together, our results suggest that XafT promotes the formation of synaptic complexes between canonical Xer recombination sites and imperfect sites.


2021 ◽  
Vol 7 (10) ◽  
pp. eabe6204
Author(s):  
Antonio Martinez-Sanchez ◽  
Ulrike Laugks ◽  
Zdravko Kochovski ◽  
Christos Papantoniou ◽  
Luca Zinzula ◽  
...  

Synaptic transmission is characterized by fast, tightly coupled processes and complex signaling pathways that require a precise protein organization, such as the previously reported nanodomain colocalization of pre- and postsynaptic proteins. Here, we used cryo–electron tomography to visualize synaptic complexes together with their native environment comprising interacting proteins and lipids on a 2- to 4-nm scale. Using template-free detection and classification, we showed that tripartite trans-synaptic assemblies (subcolumns) link synaptic vesicles to postsynaptic receptors and established that a particular displacement between directly interacting complexes characterizes subcolumns. Furthermore, we obtained de novo average structures of ionotropic glutamate receptors in their physiological composition, embedded in plasma membrane. These data support the hypothesis that synaptic function is carried by precisely organized trans-synaptic units. It provides a framework for further exploration of synaptic and other large molecular assemblies that link different cells or cellular regions and may require weak or transient interactions to exert their function.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Richard Sando ◽  
Thomas C Südhof

Neural circuit assembly in the brain requires precise establishment of synaptic connections, but the mechanisms of synapse assembly remain incompletely understood. Latrophilins are postsynaptic adhesion-GPCRs that engage in trans-synaptic complexes with presynaptic teneurins and FLRTs. In mouse CA1-region neurons, Latrophilin-2 and Latrophilin-3 are essential for formation of entorhinal-cortex-derived and Schaffer-collateral-derived synapses, respectively. However, it is unknown whether latrophilins function as GPCRs in synapse formation. Here, we show that Latrophilin-2 and Latrophilin-3 exhibit constitutive GPCR activity that increases cAMP levels, which was blocked by a mutation interfering with G-protein and arrestin interactions of GPCRs. The same mutation impaired the ability of Latrophilin-2 and Latrophilin-3 to rescue the synapse-loss phenotype in Latrophilin-2 and Latrophilin-3 knockout neurons in vivo. Our results suggest that Latrophilin-2 and Latrophilin-3 require GPCR signaling in synapse formation, indicating that latrophilins promote synapse formation in the hippocampus by activating a classical GPCR-signaling pathway.


2021 ◽  
Author(s):  
Richard Sando ◽  
Thomas C. Südhof

ABSTRACTNeural circuit assembly in the brain requires precise establishment of synaptic connections, but the mechanisms of synapse assembly remain incompletely understood. Latrophilins are postsynaptic adhesion-GPCRs that engage in trans-synaptic complexes with presynaptic teneurins and FLRTs. In CA1-region neurons, Latrophilin-2 and Latrophilin-3 are essential for formation of entorhinal-cortex-derived and Schaffer-collateral-derived synapses, respectively. However, it is unknown whether latrophilins function as GPCRs in synapse formation. Here, we show that Latrophilin-2 and Latrophilin-3 exhibit constitutive GPCR activity that increases cAMP levels, which was blocked by a mutation interfering with G-protein and arrestin interactions of GPCRs. The same mutation impaired the ability of Latrophilin-2 and Latrophilin-3 to rescue the synapse-loss phenotype in Latrophilin-2 and Latrophilin-3 knockout neurons in vivo. Our results suggest that Latrophilin-2 and Latrophilin-3 require GPCR signaling in synapse formation, indicating that latrophilins promote synapse formation in the hippocampus by activating a classical GPCR-signaling pathway.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Motokazu Uchigashima ◽  
Kohtarou Konno ◽  
Emily Demchak ◽  
Amy Cheung ◽  
Takuya Watanabe ◽  
...  

Synapse formation and regulation require signaling interactions between pre- and postsynaptic proteins, notably cell adhesion molecules (CAMs). It has been proposed that the functions of neuroligins (Nlgns), postsynaptic CAMs, rely on the formation of trans-synaptic complexes with neurexins (Nrxns), presynaptic CAMs. Nlgn3 is a unique Nlgn isoform that localizes at both excitatory and inhibitory synapses. However, Nlgn3 function mediated via Nrxn interactions is unknown. Here we demonstrate that Nlgn3 localizes at postsynaptic sites apposing vesicular glutamate transporter 3-expressing (VGT3+) inhibitory terminals and regulates VGT3+ inhibitory interneuron-mediated synaptic transmission in mouse organotypic slice cultures. Gene expression analysis of interneurons revealed that the αNrxn1+AS4 splice isoform is highly expressed in VGT3+ interneurons as compared with other interneurons. Most importantly, postsynaptic Nlgn3 requires presynaptic αNrxn1+AS4 expressed in VGT3+ interneurons to regulate inhibitory synaptic transmission. Our results indicate that specific Nlgn–Nrxn signaling generates distinct functional properties at synapses.


2020 ◽  
Vol 117 (40) ◽  
pp. 24849-24858
Author(s):  
Aparna Unnikrishnan ◽  
Carlos Amero ◽  
Deepak Kumar Yadav ◽  
Kye Stachowski ◽  
Devante Potter ◽  
...  

Mechanistic understanding of DNA recombination in the Cre-loxP system has largely been guided by crystallographic structures of tetrameric synaptic complexes. Those studies have suggested a role for protein conformational dynamics that has not been well characterized at the atomic level. We used solution nuclear magnetic resonance (NMR) spectroscopy to discover the link between intrinsic flexibility and function in Cre recombinase. Transverse relaxation-optimized spectroscopy (TROSY) NMR spectra show the N-terminal and C-terminal catalytic domains (CreNTD and CreCat) to be structurally independent. Amide 15N relaxation measurements of the CreCat domain reveal fast-timescale dynamics in most regions that exhibit conformational differences in active and inactive Cre protomers in crystallographic tetramers. However, the C-terminal helix αN, implicated in assembly of synaptic complexes and regulation of DNA cleavage activity via trans protein–protein interactions, is unexpectedly rigid in free Cre. Chemical shift perturbations and intra- and intermolecular paramagnetic relaxation enhancement (PRE) NMR data reveal an alternative autoinhibitory conformation for the αN region of free Cre, wherein it packs in cis over the protein DNA binding surface and active site. Moreover, binding to loxP DNA induces a conformational change that dislodges the C terminus, resulting in a cis-to-trans switch that is likely to enable protein–protein interactions required for assembly of recombinogenic Cre intasomes. These findings necessitate a reexamination of the mechanisms by which this widely utilized gene-editing tool selects target sites, avoids spurious DNA cleavage activity, and controls DNA recombination efficiency.


2020 ◽  
Vol 48 (12) ◽  
pp. 6413-6430
Author(s):  
Hsiu-Fang Fan ◽  
Bo-Yu Su ◽  
Chien-Hui Ma ◽  
Paul A Rowley ◽  
Makkuni Jayaram

Abstract Streptomyces phage ϕC31 integrase (Int)—a large serine site-specific recombinase—is autonomous for phage integration (attP x attB recombination) but is dependent on the phage coded gp3, a recombination directionality factor (RDF), for prophage excision (attL x attR recombination). A previously described activating mutation, E449K, induces Int to perform attL x attR recombination in the absence of gp3, albeit with lower efficiency. E449K has no adverse effect on the competence of Int for attP x attB recombination. Int(E449K) resembles Int in gp3 mediated stimulation of attL x attR recombination and inhibition of attP x attB recombination. Using single-molecule analyses, we examined the mechanism by which E449K activates Int for gp3-independent attL x attR recombination. The contribution of E449K is both thermodynamic and kinetic. First, the mutation modulates the relative abundance of Int bound attL-attR site complexes, favoring pre-synaptic (PS) complexes over non-productively bound complexes. Roughly half of the synaptic complexes formed from Int(E449K) pre-synaptic complexes are recombination competent. By contrast, Int yields only inactive synapses. Second, E449K accelerates the dissociation of non-productively bound complexes and inactive synaptic complexes formed by Int. The extra opportunities afforded to Int(E499K) in reattempting synapse formation enhances the probability of success at fruitful synapsis.


2020 ◽  
Author(s):  
Motokazu Uchigashima ◽  
Kohtarou Konno ◽  
Emily Demchak ◽  
Amy Cheung ◽  
Takuya Watanabe ◽  
...  

AbstractSynapse formation and regulation require interactions between pre- and postsynaptic proteins, notably cell adhesion molecules (CAMs). It has been proposed that the functions of neuroligins (Nlgns), postsynaptic CAMs, rely on the formation of trans-synaptic complexes with neurexins (Nrxns), presynaptic CAMs. Nlgn3 is a unique Nlgn isoform that localizes at both excitatory and inhibitory synapses. However, Nlgn3 function mediated via Nrxn interactions is unknown. Here, we demonstrate that Nlgn3 localizes at postsynaptic sites apposing vesicular glutamate transporter 3-expressing (VGT3+) inhibitory terminals and regulates VGT3+ inhibitory interneuron-mediated synaptic transmission in mouse organotypic slice cultures. Gene expression analysis of interneurons revealed that the αNrxn1+AS4 splice isoform is highly expressed in VGT3+ interneurons as compared with other interneurons. Most importantly, postsynaptic Nlgn3 requires presynaptic αNrxn1+AS4 expressed in VGT3+ interneurons to regulate inhibitory synaptic transmission. Our results indicate that specific Nlgn-Nrxn interactions generate distinct functional properties at synapses.


2020 ◽  
Author(s):  
Aparna Unnikrishnan ◽  
Carlos D. Amero ◽  
Deepak Kumar Yadav ◽  
Kye Stachowski ◽  
Devante Potter ◽  
...  

ABSTRACTMechanistic understanding of DNA recombination in the Cre-loxP system has largely been guided by crystallographic structures of tetrameric synaptic complexes. Those studies have suggested a role for protein conformational dynamics that has not been well characterized at the atomic level. We used solution NMR to discover the link between intrinsic flexibility and function in Cre recombinase. TROSY-NMR spectra show the N-terminal and C-terminal catalytic domains (CreNTD, CreCat) to be structurally independent. Amide 15N relaxation measurements of the CreCat domain reveal fast time scale dynamics in most regions that exhibit conformational differences in active and inactive Cre protomers in crystallographic tetramers. However, the C-terminal helix αN, implicated in assembly of synaptic complexes and regulation of DNA cleavage activity via trans protein-protein interactions, is unexpectedly rigid in free Cre. Chemical shift perturbations and intra- and inter-molecular paramagnetic relaxation enhancement (PRE) NMR data reveal an alternative auto-inhibitory conformation for the αN region of free Cre, wherein it packs in cis over the protein DNA binding surface and active site. Moreover, binding to loxP DNA induces a conformational change that dislodge the C-terminus, resulting in a cis to trans switch that is likely to enable protein-protein interactions required for assembly of recombinogenic Cre intasomes. These findings necessitate a re-examination of the mechanisms by which this widely-utilized gene editing tool selects target sites, avoids spurious DNA cleavage activity, and controls DNA recombination efficiency.SIGNIFICANCE STATEMENTThe Cre-loxP system is a widely used gene editing tool that has enabled transformative advances in immunology, neuroscience and cardiovascular research. Still, off-target activities confound research results and present obstacles to biomedical applications. Overcoming those limitations requires understanding the steps leading to assembly of recombination complexes, intasomes. We measured the magnetic properties of nitrogen nuclei in the backbone of the enzyme to correlate its intrinsic dynamics with its function in DNA recognition and cleavage. Remarkably, we found that in the absence of DNA the C-terminus of Cre appears to block the DNA binding surface and active site of the enzyme. Binding to loxP DNA induces a conformational switch that would enable the intermolecular protein-protein interactions required for assembly of recombinogenic Cre intasomes.


Sign in / Sign up

Export Citation Format

Share Document