scholarly journals Numerical Simulation of the Thermally Developed Pulsatile Flow of a Hybrid Nanofluid in a Constricted Channel

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2410
Author(s):  
Amjad Ali ◽  
Zainab Bukhari ◽  
Gullnaz Shahzadi ◽  
Zaheer Abbas ◽  
Muhammad Umar

Heat transfer analysis of the pulsatile flow of a hybrid nanofluid through a constricted channel under the impact of a magnetic field and thermal radiation is presented. Hybrid nanofluids form a new class of nanofluids, distinguished by the thermal properties and functional utilities for improving the heat transfer rate. The behaviors of a water-based copper nanofluid and water-based copper plus a single-wall carbon nanotube, i.e., (Cu–SWCNT/water), hybrid nanofluid over each of velocity, wall shear stress, and temperature profiles, are visualized graphically. The time-dependent governing equations of the incompressible fluid flow are transformed to the vorticity-stream function formulation and solved numerically using the finite difference method. The laminar flow simulations are carried out in 2D for simplicity as the flow profiles are assumed to vary only in the 2D plane represented by the 2D Cartesian geometry. The streamlines and vorticity contours are also shown to demonstrate the flow behviour along the channel. For comparison of the flow characteristics and heat transfer rate, the impacts of variations in Hartmann number, Strouhal number, Prandtl number, and the thermal radiation parameter are analyzed. The effects of the emerging parameters on the skin friction coefficient and Nusselt number are also examined. The hybrid nanofluid is demonstrated to have better thermal characteristics than the traditional one.

Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 276
Author(s):  
Nur Syazana Anuar ◽  
Norfifah Bachok

The mathematical modeling of unsteady flow of micropolar Cu–Al2O3/water nanofluid driven by a deformable sheet in stagnation region with thermal radiation effect has been explored numerically. To achieve the system of nonlinear ordinary differential equations (ODEs), we have employed some appropriate transformations and solved it numerically using MATLAB software (built-in solver called bvp4c). Influences of relevant parameters on fluid flow and heat transfer characteristic are discussed and presented in graphs. The findings expose that double solutions appear in shrinking sheet case in which eventually contributes to the analysis of stability. The stability analysis therefore confirms that merely the first solution is a stable solution. Addition of nanometer-sized particle (Cu) has been found to significantly strengthen the heat transfer rate of micropolar nanofluid. When the copper nanoparticle volume fraction increased from 0 to 0.01 (1%) in micropolar nanofluid, the heat transfer rate increased roughly to an average of 17.725%. The result also revealed that an upsurge in the unsteady and radiation parameters have been noticed to enhance the local Nusselt number of micropolar hybrid nanofluid. Meanwhile, the occurrence of material parameter conclusively decreases it.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 276
Author(s):  
Umair Khan ◽  
Aurang Zaib ◽  
Iskandar Waini ◽  
Anuar Ishak ◽  
El-Sayed M. Sherif ◽  
...  

Colloidal suspensions of regular fluids and nanoparticles are known as nanofluids. They have a variety of applications in the medical field, including cell separation, drug targeting, destruction of tumor tissue, and so on. On the other hand, the dispersion of multiple nanoparticles into a regular fluid is referred to as a hybrid nanofluid. It has a variety of innovative applications such as microfluidics, heat dissipation, dynamic sealing, damping, and so on. Because of these numerous applications of nanofluids in minds, therefore, the objective of the current exploration divulged the axisymmetric radiative flow and heat transfer induced by hybrid nanofluid impinging on a porous stretchable/shrinkable rotating disc. In addition, the impact of Smoluchowski temperature and Maxwell velocity slip boundary conditions are also invoked. The hybrid nanofluid was formed by mixing the copper (Cu) and alumina (Al2O3) nanoparticles scattered in the regular (viscous) base fluid (H2O). Similarity variables are used to procure the similarity equations, and the numerical outcomes are achieved using bvp4c in MATLAB software. According to the findings, double solutions are feasible for stretching (λ>0) and shrinking cases (λ<0). The heat transfer rate is accelerated as the hybrid nanoparticles increases. The suction parameter enhances the friction factors as well as heat transfer rate. Moreover, the friction factor in the radial direction and heat transfer enrich for the first solution and moderate for the second outcome due to the augmentation δ1, while the trend of the friction factor in the radial direction is changed only in the case of stretching for both branches.


Author(s):  
Manimegalai Kavarthalai ◽  
Vimala Ponnuswamy

A theoretical study of a squeezing ferro-nanofluid flow including thermal effects is carried out with application to bearings and articular cartilages. A representational geometry of the thin layer of a ferro-nanofluid squeezed between a flat rigid disk and a thin porous bed is considered. The flow behaviours and heat transfer in the fluid and porous regions are investigated. The mathematical problem is formulated based on the Neuringer–Rosensweig model for ferro-nanofluids in the fluid region including an external magnetic field, Darcy law for the porous region and Beavers–Joseph slip condition at the fluid–porous interface. The expressions for velocity, fluid film thickness, contact time, fluid flux, streamlines, pathlines, mean temperature and heat transfer rate in the fluid and porous regions are obtained by using a perturbation method. An asymptotic solution for the fluid layer thickness is also presented. The problem is also solved by a numerical method and the results by asymptotic analysis, perturbation and numerical methods are obtained assuming a constant force squeezing state and are compared. It is shown that the results obtained by all the methods agree well with each other. The effects of various parameters such as Darcy number, Beavers–Joseph constant and magnetization parameter on the flow behaviours, contact time, mean temperature and heat transfer rate are investigated. The novel results showing the impact of using ferro-nanofluids in the two applications under consideration are presented. The results under special cases are further compared with the existing results in the literature and are found to agree well.


2020 ◽  
Vol 30 (10) ◽  
pp. 4583-4606 ◽  
Author(s):  
Najiyah Safwa Khashi’ie ◽  
Norihan Md Arifin ◽  
Ioan Pop ◽  
Roslinda Nazar ◽  
Ezad Hafidz Hafidzuddin ◽  
...  

Purpose This paper aims to scrutinize the analysis of non-axisymmetric Homann stagnation point flow and heat transfer of hybrid Cu-Al2O3/water nanofluid over a stretching/shrinking flat plate. Design/methodology/approach The similarity transformation which fulfils the continuity equation is opted to transform the coupled momentum and energy equations into the nonlinear ordinary differential equations. Numerical solutions which are elucidated in the tables and graphs are obtained using the bvp4c solver. Findings Non-unique solutions (first and second) are feasible for both stretching and shrinking cases within the specific values of the parameters. First solution is the physical/real solution based on the execution of stability analysis. An upsurge of the ratio of the ambient fluid strain rate to the plate strain rate can delay the boundary layer separation, whereas a boost of the ratio of the ambient fluid shear rate to the plate strain rate only accelerates the separation of boundary layer. The heat transfer rate of hybrid nanofluid is greater for the stretching case than the shrinking case. However, for the shrinking case, the heat transfer rate intensifies with the increment of the copper (Cu) nanoparticles volume fraction, whereas a contrary result is found for the stretching case. Originality/value The present numerical results are original and new. It can contribute to other researchers on electing the relevant parameters to optimize the heat transfer process in the modern industry, and the right parameters to generate non-unique solution so that no misjudgment on flow and heat transfer features.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Najiyah Safwa Khashi'ie ◽  
Norihan M. Arifin ◽  
Ioan Pop

Purpose This study aims to analyze the unsteady flow of hybrid Cu-Al2O3/water nanofluid over a permeable stretching/shrinking disc. The analysis of flow stability is also purposed because of the non-uniqueness of solutions. Design/methodology/approach The reduced differential equations (similarity) are solved numerically using the aid of bvp4c solver (Matlab). Two types of thermophysical correlations for hybrid nanofluid (Type 1 and 2) are adopted for the comparison results. Using correlation Type 1, the heat transfer and flow analysis including the profiles (velocity and temperature) are presented in the figures and tables with different values control parameters. Three sets of hybrid nanofluid are analyzed: Set 1 (1% Al2O3 + 1% Cu), Set 2 (0.5% Al2O3 + 1% Cu) and Set 3 (1% Al2O3 + 0.5% Cu). Findings The comparison of numerical values between present (Types 1 and 2 correlations) and previous (Type 2 correlations) results are in a good compliance with approximate percent relative error. The appearance of two solutions is noticed when the suction parameter is considered and the unsteady parameter is less than 0 (decelerating flow) for both stretching and shrinking disc while only one solution is possible for steady flow. The hybrid nanofluid in Set 1 can delay the separation of boundary layer but the hybrid nanofluid in Set 3 has the greatest heat transfer rate. Moreover, the inclusion of wall mass suction for stretching case can generate a significant increment of heat transfer rate approximately 90% for all fluids (water, single and hybrid nanofluids). Originality/value The present findings are novel and can be a reference point to other researchers to further analyze the heat transfer performance and stability of the working fluids.


2019 ◽  
Vol 16 (2) ◽  
pp. 109-126 ◽  
Author(s):  
Ishrat Zahan ◽  
R Nasrin ◽  
M A Alim

A numerical analysis has been conducted to show the effects of magnetohydrodynamic (MHD) and Joule heating on heat transfer phenomenon in a lid driven triangular cavity. The heat transfer fluid (HTF) has been considered as water based hybrid nanofluid composed of equal quantities of Cu and TiO2 nanoparticles. The bottom wall of the cavity is undulated in sinusoidal pattern and cooled isothermally. The left vertical wall of the cavity is heated while the inclined side is insulated. The two dimensional governing partial differential equations of heat transfer and fluid flow with appropriate boundary conditions have been solved by using Galerkin's finite element method built in COMSOL Multyphysics. The effects of Hartmann number, Joule heating, number of undulation and Richardson number on the flow structure and heat transfer characteristics have been studied in details. The values of Prandtl number and solid volume fraction of hybrid nanoparticles have been considered as fixed. Also, the code validation has been shown. The numerical results have been presented in terms of streamlines, isotherms and average Nusselt number of the hybrid nanofluid for different values of governing parameters. The comparison of heat transfer rate by using hybrid nanofluid, Cu-water nanofluid,  TiO2 -water nanofluid and clear water has been also shown. Increasing wave number from 0 to 3 enhances the heat transfer rate by 16.89%. The enhanced rate of mean Nusselt number for hybrid nanofluid is found as 4.11% compared to base fluid.


Author(s):  
Anthony Edward Morris ◽  
C. S. Wei ◽  
Runar Unnthorsson ◽  
Robert Dell

Since 2006, The Center for Innovation and Applied Technology (CIAT) at Cooper Union for the Advancement of Science and Art has been developing a system to use thermal pollution to heat the growth medium of green roofs. CIAT is researching various apparatus and techniques, including shell-and-tube and shell-and-coil heat exchangers, to improve its heated ground agricultural projects. There are limited recorded observations on shell-and-coil heat exchangers; therefore a laboratory work station was created of interchangeable components to test the efficiency of a variety of coil designs. This paper discusses the data collected on temperature, pressure, and flow rates for a straight tube and two different helical coils. The analysis of this data indicates the superiority of a helical coil design when compared to a straight tube design with respect to both rating and heat transfer rate. The same data analysis has lead to preliminary observations on how the contour properties of a helical coil influence the heat transfer rate through a coil. The authors intend to further this helical coil research to develop a useful mathematical model for determining efficient designs for shell-and-coil heat exchangers.


2018 ◽  
Vol 37 ◽  
pp. 121-129 ◽  
Author(s):  
Goutam Saha

A numerical investigation is carried out to observe the augmentation of heat transfer because of the presence of TiO2 nanofluid inside a sinusoidal cavity. In this study, upper and lower walls of the cavity are considered adiabatic, higher and lower temperature are maintained at left and right vertical walls respectively. Also, 2D contour of velocity and temperature with average heat transfer rate are presented and discussed. Our findings show that augmentation of heat transfer is feasible with the increase of concentrations of nanoparticles.GANIT J. Bangladesh Math. Soc.Vol. 37 (2017) 121-129


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 898 ◽  
Author(s):  
Iskandar Waini ◽  
Anuar Ishak ◽  
Ioan Pop

This paper examines the squeezed hybrid nanofluid flow over a permeable sensor surface with magnetohydrodynamics (MHD) and radiation effects. The alumina (Al2O3) and copper (Cu) are considered as the hybrid nanoparticles, while water is the base fluid. The governing equations are reduced to the similarity equations, using the similarity transformation. The resulting equations are programmed in Matlab software through the bvp4c solver to obtain the numerical solutions. It was found that the heat transfer rate was greater for the hybrid nanofluid, compared to the regular nanofluid. It was observed that dual solutions exist for some values of the permeable parameter S. The upper branch solutions of the skin friction coefficient ( Re x 1 / 2 C f ) and the heat transfer rate at the surface ( Re x − 1 / 2 N u x ) enhance with the added Cu nanoparticle ( φ 2 ) and for larger magnetic strength ( M ). Moreover, the values of Re x 1 / 2 C f decrease, whereas the values of Re x − 1 / 2 N u x increase for both branches, with the rise of the squeeze flow index ( b ). Besides, an increment of the heat transfer rate at the sensor surface for both branches was observed in the presence of radiation ( R ). Temporal stability analysis was employed to determine the stability of the dual solutions, and it was discovered that only one of them was stable and physically reliable as time evolves.


Sign in / Sign up

Export Citation Format

Share Document