alditol acetates
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 7)

H-INDEX

26
(FIVE YEARS 0)

Separations ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 42
Author(s):  
Lukas Pfeifer ◽  
Birgit Classen

Methylation of one hydroxyl group of monosaccharides occurs in some bacteria, fungi, worms, molluscs, and also in plants. Although knowledge on the exact functions of this process is missing, methylation is an option to modulate glycan structures thereby leading to new biological activities. In plants, methylated monosaccharides are often present in minor amounts and, therefore, overseen in analytical investigations. A special difficulty is the distinction between 3-O-methyl- and 4-O-methyl-hexoses, due to similar fragmentation patterns of methylated alditol acetates in gas-chromatography with mass spectrometric detection and, in the case of galactose, identical retention times due to symmetry. We, therefore, developed and validated an easy method for the quantitative distinction between 3-O-methyl- and 4-O-methyl-hexoses and showed its functionality by quantification of 3-O-methyl galactose in a high molecular weight polysaccharide mixture from the charophyte Spirogyra. A systematic search for methylated monosaccharides in different plant lineages may offer new insights in plant cell wall evolution.


2020 ◽  
Author(s):  
Ian Sims ◽  
CJ Pollock ◽  
R Horgan

Individual fructan tri-, tetra- and pentasaccharide isomers in neutral, water-soluble extracts from Lolium temulentum were purified and the linkages present in these isomeric oligosaccharides were analysed by combined GC-mass spectrometry of partially methylated alditol acetates. 1-Kestose and neokestose were the most abundant trisaccharides with 6-kestose present in much lower amounts. Analysis of isomers of DP 4 and 5 showed that multiple linkage types were present with structures based on all three trisaccharides. Oligosaccharides based on neokestose but with 2,6 linkages between adjacent fructose residues have not been previously detected in higher plants. © 1992.


2020 ◽  
Author(s):  
Ian Sims ◽  
CJ Pollock ◽  
R Horgan

Individual fructan tri-, tetra- and pentasaccharide isomers in neutral, water-soluble extracts from Lolium temulentum were purified and the linkages present in these isomeric oligosaccharides were analysed by combined GC-mass spectrometry of partially methylated alditol acetates. 1-Kestose and neokestose were the most abundant trisaccharides with 6-kestose present in much lower amounts. Analysis of isomers of DP 4 and 5 showed that multiple linkage types were present with structures based on all three trisaccharides. Oligosaccharides based on neokestose but with 2,6 linkages between adjacent fructose residues have not been previously detected in higher plants. © 1992.


2020 ◽  
Author(s):  
Ian Sims ◽  
Susan Carnachan ◽  
Tracey Bell ◽  
Simon Hinkley

© 2018 Elsevier Ltd Glycosyl linkage (methylation) analysis is used widely for the structural determination of oligo- and poly-saccharides. The procedure involves derivatisation of the individual component sugars of a polysaccharide to partially methylated alditol acetates which are analysed and quantified by gas chromatography-mass spectrometry. The linkage positions for each component sugar can be determined by correctly identifying the partially methylated alditol acetates. Although the methods are well established, there are many technical aspects to this procedure and both careful attention to detail and considerable experience are required to achieve a successful methylation analysis and to correctly interpret the data generated. The aim of this article is to provide the technical details and critical procedural steps necessary for a successful methylation analysis and to assist researchers (a) with interpreting data correctly and (b) in providing the comprehensive data required for reviewers to fully assess the work.


2020 ◽  
Author(s):  
Ian Sims ◽  
Susan Carnachan ◽  
Tracey Bell ◽  
Simon Hinkley

© 2018 Elsevier Ltd Glycosyl linkage (methylation) analysis is used widely for the structural determination of oligo- and poly-saccharides. The procedure involves derivatisation of the individual component sugars of a polysaccharide to partially methylated alditol acetates which are analysed and quantified by gas chromatography-mass spectrometry. The linkage positions for each component sugar can be determined by correctly identifying the partially methylated alditol acetates. Although the methods are well established, there are many technical aspects to this procedure and both careful attention to detail and considerable experience are required to achieve a successful methylation analysis and to correctly interpret the data generated. The aim of this article is to provide the technical details and critical procedural steps necessary for a successful methylation analysis and to assist researchers (a) with interpreting data correctly and (b) in providing the comprehensive data required for reviewers to fully assess the work.


2006 ◽  
Vol 2006 (1) ◽  
pp. pdb.prot4246 ◽  
Author(s):  
David Oxley ◽  
Graeme Currie ◽  
Antony Bacic

Sign in / Sign up

Export Citation Format

Share Document