source preparation
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 15)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 11 (23) ◽  
pp. 11289
Author(s):  
Shengjie Xu ◽  
Yin Li ◽  
Yijun Wang ◽  
Yun Mao ◽  
Zhiyue Zuo ◽  
...  

Satellite-based quantum key distribution (QKD) has lately received considerable attention due to its potential to establish a secure global network. Associated with its application is a turbulent atmosphere that sets a notable restriction to the transmission efficiency, which is especially challenging for ground-to-satellite uplink scenarios. Here, we propose a novel noiseless attenuation (NA) scheme involving a zero-photon catalysis operation for source preparation to improve the performance of continuous-variable (CV) QKD over uplink. Numerical analysis shows that the NA-based CV-QKD, under attenuation optimization, outperforms the traditional CV-QKD, which is embodied in extending the allowable zenith angle while improving the effective communication time. Attributing to characteristics of the attenuation optimization, we find that the NA-involved source preparation improves the security bound by relatively reducing the amount of information available to eavesdroppers. Taking the finite-size effect into account, we achieve a tighter bond of security, which is more practical compared with the asymptotic limit.


2021 ◽  
Vol 1826 (1) ◽  
pp. 012038
Author(s):  
F L Cacais ◽  
J U Delgado ◽  
V M Loayza ◽  
J A Rangel

Author(s):  
Viktor Jobbágy ◽  
Maria Marouli ◽  
Heiko Stroh

AbstractThe aim of this work was to prepare reference radon emanation sources traceable to primary standards to be used for radon-in-air as well as radon-in-water experiments. The feasibility of making stable radon emanation sources by drop deposition and chemisorption was studied. Experimental emanation coefficients for sources made by drop deposition and chemisorption ranged from 0.10 to 0.74 and from 0.18 to 0.25, respectively. These relatively low emanation coefficient values suggest that further method developments would be desirable. Proposals are made to improve chemisorption yield during source preparation and to obtain more accurate measurements on radon emanation coefficient.


2021 ◽  
Author(s):  
Jaya Bharathi Jayabalan ◽  
Senthilkumar Kandasamy ◽  
Manjula Palanisamy ◽  
Prasad Rangasamy ◽  
Ajay Sathiya

2020 ◽  
Vol 10 (21) ◽  
pp. 7770
Author(s):  
Zhengchun Zhou ◽  
Shanhua Zou ◽  
Tongcheng Huang ◽  
Ying Guo

Establishing global secure networks is a potential implementation of continuous-variable quantum key distribution (CVQKD) but it is also challenged with respect to long-distance transmission. The discrete modulation (DM) can make up for the shortage of transmission distance in that it has a unique advantage against all side-channel attacks; however, its further performance improvement requires source preparation in the presence of noise and loss. Here, we consider the effects of photon catalysis (PC) on the DM-involved source preparation for improving the transmission distance. We address a zero-photon-catalysis (ZPC)-based source preparation for enhancing the DM–CVQKD system. The statistical fluctuation is taken into account for the practical security analysis. Numerical simulations show that the ZPC-based source preparation can not only achieve the long-distance transmission, but also contributes to the reasonable increase of the secret key rate.


Author(s):  
Zhengchun Zhou ◽  
Shanhua Zou ◽  
Yun Mao ◽  
Tongcheng Huang ◽  
Ying Guo

Establishing global high-rate secure communications is a potential application of continuous-variable quantum key distribution (CVQKD) but also challenging for long-distance transmissions in metropolitan areas. The discrete modulation(DM) can make up for the shortage of transmission distance that has a unique advantage against all side-channel attacks, however its further performance improvement requires source preparation in the presence of noise and loss. Here, we consider the effects of photon catalysis (PC) on the DM-involved source preparation for lengthening the maximal transmission distance of the CVQKD system. We address a zero-photon catalysis (ZPC)-based source preparation for enhancing the DM-CVQKD system. The statistical fluctuation due to the finite length of data is taken into account for the practical security analysis. Numerical simulations show that the ZPC-based DM-CVQKD system can not only achieve the extended maximal transmission distance, but also contributes to the reasonable increase of the secret key rate. This approach enables the DM-CVQKD to tolerate lower reconciliation efficiency, which may promote the practical implementation solutions compatible with classical optical communications using state-of-the-art technology.


Sign in / Sign up

Export Citation Format

Share Document