A green intumescent flame retardant system using inositol‐based carbon source: Preparation and characteristics in polypropylene

2021 ◽  
Author(s):  
Siyin Ding ◽  
Peng Liu ◽  
Shimin Zhang ◽  
Yanfen Ding ◽  
Feng Wang ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 71 ◽  
Author(s):  
Xueying Shan ◽  
Kuanyu Jiang ◽  
Jinchun Li ◽  
Yan Song ◽  
Ji Han ◽  
...  

A new P-N containing the flame retardant, which was namely N,N′-dibutyl-phosphate diamide (DBPDA), was synthesized and it was assembled into the cavity of β-cyclodextrin (β-CD) to form an inclusion complex (IC). The structure and properties of IC were characterized by Fourier transform infraredspectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), 1H nuclear magnetic resonance (1H NMR), scanning electron microscopy with X-ray microanalysis (SEM-EDS), differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA). 1H NMR and SEM-EDS were also used to identify the molar ratio of β-CD/DBPDA in IC and the results from the analyses indicated that their molar ratio was 1:1. In order to test the flame retardant effect of IC, it was added to epoxy (EP). IC was proposed to be able to act as an intumescent flame retardant (IFR) system in EP through a combination of β-CD and DBPDA properties during the combustion process. β-CD is a biomass carbon source, which has the advantages of environmental protection and low cost. Furthermore, DBPDA is both a source of acid and gas. When IC was heated, IC had the advantage of acting as both a carbon source and foam forming agent, while the DBPDA component were able to directly generate phosphoric acid and NH3 in situ. The impact of IC in low additive amounts on flame retardancy of EP was studied by the cone calorimeter test. When only 3 wt % IC was incorporated, the peak values of heat release rate (pHRR) and smoke production rate (pSPR) of EP were reduced by 22.9% and 33.3% respectively, which suggested that IC could suppress the heat and smoke release efficiently.



2011 ◽  
Vol 22 (7) ◽  
pp. 1115-1122 ◽  
Author(s):  
Jian-Xiang Feng ◽  
Sheng-Pei Su ◽  
Jin Zhu


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20391-20402
Author(s):  
Chen Cheng ◽  
Yanling Lu ◽  
Weining Ma ◽  
Shaojie Li ◽  
Jun Yan ◽  
...  

Red phosphorus was coated by a polydopamine/melamine composite shell structure, which constituted an intumescent flame retardant with superior flame retardance and smoke suppression performance for epoxy resin.



2021 ◽  
pp. 51187
Author(s):  
Hui Shen ◽  
Wei Wu ◽  
Zhengyi Wang ◽  
Wenzheng Wu ◽  
Yue Yuan ◽  
...  


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4094
Author(s):  
Imran Ali ◽  
Nam Kyeun Kim ◽  
Debes Bhattacharyya

The integration of intumescent flame-retardant (IFR) additives in natural fiber-based polymer composites enhances the fire-retardant properties, but it generally has a detrimental effect on the mechanical properties, such as tensile and flexural strengths. In this work, the feasibility of graphene as a reinforcement additive and as an effective synergist for IFR-based flax-polypropylene (PP) composites was investigated. Noticeable improvements in tensile and flexural properties were achieved with the addition of graphene nanoplatelets (GNP) in the composites. Furthermore, better char-forming ability of GNP in combination with IFR was observed, suppressing HRR curves and thus, lowering the total heat release (THR). Thermogravimetric analysis (TGA) detected a reduction in the decomposition rate due to strong interfacial bonding between GNP and PP, whereas the maximum decomposition rate was observed to occur at a higher temperature. The saturation point for the IFR additive along with GNP has also been highlighted in this study. A safe and effective method of graphene encapsulation within PP using the fume-hood set-up was achieved. Finally, the effect of flame retardant on the flax–PP composite has been simulated using Fire Dynamics Simulator.



2019 ◽  
Vol 132 ◽  
pp. 178-183 ◽  
Author(s):  
YaChao Wang ◽  
JiangPing Zhao ◽  
Meng Xiaojing


2014 ◽  
Vol 53 (4) ◽  
pp. 395-402 ◽  
Author(s):  
Hong Yan ◽  
Bo Dong ◽  
Xiangxiang Du ◽  
Senyuan Ma ◽  
Liqiao Wei ◽  
...  


RSC Advances ◽  
2015 ◽  
Vol 5 (21) ◽  
pp. 16328-16339 ◽  
Author(s):  
Rui-Min Li ◽  
Cong Deng ◽  
Cheng-Liang Deng ◽  
Liang-Ping Dong ◽  
Hong-Wei Di ◽  
...  

The water resistance, flame retardancy and mechanical properties of POE intumescent flame-retardant systems were improved simultaneously.



Sign in / Sign up

Export Citation Format

Share Document