scholarly journals Hajós and Ore Constructions for Digraphs

10.37236/8942 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Jørgen Bang-Jensen ◽  
Thomas Bellitto ◽  
Thomas Schweser ◽  
Michael Stiebitz

The dichromatic number $\overrightarrow{\chi}(D)$ of a digraph $D$ is the minimum number of colors needed to color the vertices of $D$ such that each color class induces an acyclic subdigraph of $D$. A digraph $D$ is $k$-critical if $\overrightarrow{\chi}(D) = k$ but $\overrightarrow{\chi}(D') < k$ for all proper subdigraphs $D'$ of $D$. We examine methods for creating infinite families of critical digraphs, the Dirac join and the directed and bidirected Hajós join. We prove that a digraph $D$ has dichromatic number at least $k$ if and only if it contains a subdigraph that can be obtained from bidirected complete graphs on $k$ vertices by directed Hajós joins and identifying non-adjacent vertices. Building upon that, we show that a digraph $D$ has dichromatic number at least $k$ if and only if it can be constructed from bidirected $K_k$'s by using directed and bidirected Hajós joins and identifying non-adjacent vertices (so called Ore joins), thereby transferring a well-known result of Urquhart to digraphs. Finally, we prove a Gallai-type theorem that characterizes the structure of the low vertex subdigraph of a critical digraph, that is, the subdigraph, which is induced by the vertices that have in-degree $k-1$ and out-degree $k-1$ in $D$.

10.37236/9906 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Pierre Aboulker ◽  
Pierre Charbit ◽  
Reza Naserasr

The dichromatic number of a digraph $D$ is the minimum number of colors needed to color its vertices  in such a way that each color class induces an acyclic digraph. As it generalizes the notion of the chromatic number of graphs, it has become the focus of numerous works. In this work we look at possible extensions of the Gyárfás-Sumner conjecture. In particular, we conjecture a simple characterization  of sets $\mathcal F$ of three digraphs such that every digraph with sufficiently large dichromatic number must contain a member of $\mathcal F$ as an induced subdigraph.  Among notable results, we prove that oriented $K_4$-free graphs without a directed path of length $3$ have bounded dichromatic number where a bound of $414$ is provided. We also show that an orientation of a complete multipartite graph with no directed triangle is $2$-colorable. To prove these results we introduce the notion of nice sets that might be of independent interest.


2014 ◽  
Vol 24 (4) ◽  
pp. 658-679 ◽  
Author(s):  
JÓZSEF BALOGH ◽  
PING HU ◽  
BERNARD LIDICKÝ ◽  
OLEG PIKHURKO ◽  
BALÁZS UDVARI ◽  
...  

We show that for every sufficiently largen, the number of monotone subsequences of length four in a permutation onnpoints is at least\begin{equation*} \binom{\lfloor{n/3}\rfloor}{4} + \binom{\lfloor{(n+1)/3}\rfloor}{4} + \binom{\lfloor{(n+2)/3}\rfloor}{4}. \end{equation*}Furthermore, we characterize all permutations on [n] that attain this lower bound. The proof uses the flag algebra framework together with some additional stability arguments. This problem is equivalent to some specific type of edge colourings of complete graphs with two colours, where the number of monochromaticK4is minimized. We show that all the extremal colourings must contain monochromaticK4only in one of the two colours. This translates back to permutations, where all the monotone subsequences of length four are all either increasing, or decreasing only.


1969 ◽  
Vol 21 ◽  
pp. 992-1000 ◽  
Author(s):  
L. W. Beineke

Although the problem of finding the minimum number of planar graphs into which the complete graph can be decomposed remains partially unsolved, the corresponding problem can be solved for certain other surfaces. For three, the torus, the double-torus, and the projective plane, a single proof will be given to provide the solutions. The same questions will also be answered for bicomplete graphs.


2007 ◽  
Vol Vol. 9 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Olivier Togni

Graphs and Algorithms International audience The strong chromatic index of a graph is the minimum number of colours needed to colour the edges in such a way that each colour class is an induced matching. In this paper, we present bounds for strong chromatic index of three different products of graphs in term of the strong chromatic index of each factor. For the cartesian product of paths, cycles or complete graphs, we derive sharper results. In particular, strong chromatic indices of d-dimensional grids and of some toroidal grids are given along with approximate results on the strong chromatic index of generalized hypercubes.


Author(s):  
A. Mohammed Abid ◽  
T. R. Ramesh Rao

A strict strong coloring of a graph [Formula: see text] is a proper coloring of [Formula: see text] in which every vertex of the graph is adjacent to every vertex of some color class. The minimum number of colors required for a strict strong coloring of [Formula: see text] is called the strict strong chromatic number of [Formula: see text] and is denoted by [Formula: see text]. In this paper, we characterize the results on strict strong coloring of Mycielskian graphs and iterated Mycielskian graphs.


10.37236/831 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Paz Carmi ◽  
Vida Dujmović ◽  
Pat Morin ◽  
David R. Wood

The distance-number of a graph $G$ is the minimum number of distinct edge-lengths over all straight-line drawings of $G$ in the plane. This definition generalises many well-known concepts in combinatorial geometry. We consider the distance-number of trees, graphs with no $K^-_4$-minor, complete bipartite graphs, complete graphs, and cartesian products. Our main results concern the distance-number of graphs with bounded degree. We prove that $n$-vertex graphs with bounded maximum degree and bounded treewidth have distance-number in ${\cal O}(\log n)$. To conclude such a logarithmic upper bound, both the degree and the treewidth need to be bounded. In particular, we construct graphs with treewidth $2$ and polynomial distance-number. Similarly, we prove that there exist graphs with maximum degree $5$ and arbitrarily large distance-number. Moreover, as $\Delta$ increases the existential lower bound on the distance-number of $\Delta$-regular graphs tends to $\Omega(n^{0.864138})$.


2021 ◽  
Vol 41 (2) ◽  
pp. 245-257
Author(s):  
Mohammad R. Piri ◽  
Saeid Alikhani

We introduce and study the dominated edge coloring of a graph. A dominated edge coloring of a graph \(G\), is a proper edge coloring of \(G\) such that each color class is dominated by at least one edge of \(G\). The minimum number of colors among all dominated edge coloring is called the dominated edge chromatic number, denoted by \(\chi_{dom}^{\prime}(G)\). We obtain some properties of \(\chi_{dom}^{\prime}(G)\) and compute it for specific graphs. Also examine the effects on \(\chi_{dom}^{\prime}(G)\), when \(G\) is modified by operations on vertex and edge of \(G\). Finally, we consider the \(k\)-subdivision of \(G\) and study the dominated edge chromatic number of these kind of graphs.


10.37236/1303 ◽  
1997 ◽  
Vol 4 (1) ◽  
Author(s):  
Anant P. Godbole ◽  
Ben Lamorte ◽  
Erik Jonathan Sandquist

Let $G_2(n)$ denote a bipartite graph with $n$ vertices in each color class, and let $z(n,t)$ be the bipartite Turán number, representing the maximum possible number of edges in $G_2(n)$ if it does not contain a copy of the complete bipartite subgraph $K(t,t)$. It is then clear that $\zeta(n,t)=n^2-z(n,t)$ denotes the minimum number of zeros in an $n\times n$ zero-one matrix that does not contain a $t\times t$ submatrix consisting of all ones. We are interested in the behaviour of $z(n,t)$ when both $t$ and $n$ go to infinity. The case $2\le t\ll n^{1/5}$ has been treated elsewhere; here we use a different method to consider the overlapping case $\log n\ll t\ll n^{1/3}$. Fill an $n \times n$ matrix randomly with $z$ ones and $\zeta=n^2-z$ zeros. Then, we prove that the asymptotic probability that there are no $t \times t$ submatrices with all ones is zero or one, according as $z\ge(t/ne)^{2/t}\exp\{a_n/t^2\}$ or $z\le(t/ne)^{2/t}\exp\{(\log t-b_n)/t^2\}$, where $a_n$ tends to infinity at a specified rate, and $b_n\to\infty$ is arbitrary. The proof employs the extended Janson exponential inequalities.


2020 ◽  
Vol 20 (02) ◽  
pp. 2050007
Author(s):  
P. C. LISNA ◽  
M. S. SUNITHA

A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph G, denoted by φ(G), is the largest integer k such that G has a b-coloring with k colors. The b-chromatic sum of a graph G(V, E), denoted by φ′(G) is defined as the minimum of sum of colors c(v) of v for all v ∈ V in a b-coloring of G using φ(G) colors. The Mycielskian or Mycielski, μ(H) of a graph H with vertex set {v1, v2,…, vn} is a graph G obtained from H by adding a set of n + 1 new vertices {u, u1, u2, …, un} joining u to each vertex ui(1 ≤ i ≤ n) and joining ui to each neighbour of vi in H. In this paper, the b-chromatic sum of Mycielskian of cycles, complete graphs and complete bipartite graphs are discussed. Also, an application of b-coloring in image processing is discussed here.


Sign in / Sign up

Export Citation Format

Share Document