scholarly journals Majority Colorings of Sparse Digraphs

2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Michael Anastos ◽  
Ander Lamaison ◽  
Raphael Steiner ◽  
Tibor Szabó

A majority coloring of a directed graph is a vertex-coloring in which every vertex has the same color as at most half of its out-neighbors. Kreutzer, Oum, Seymour, van der Zypen and Wood proved that every digraph has a majority $4$-coloring and conjectured that every digraph admits a majority $3$-coloring. They observed that the Local Lemma implies the conjecture for digraphs of large enough minimum out-degree if, crucially, the maximum in-degree is bounded by a(n exponential) function of the minimum out-degree. Our goal in this paper is to develop alternative methods that allow the verification of the conjecture for natural, broad digraph classes, without any restriction on the in-degrees. Among others, we prove the conjecture 1) for digraphs with chromatic number at most $6$ or dichromatic number at most $3$, and thus for all planar digraphs; and 2) for digraphs with maximum out-degree at most $4$. The benchmark case of $r$-regular digraphs remains open for $r \in [5,143]$. Our inductive proofs depend on loaded inductive statements about precoloring extensions of list-colorings. This approach also gives rise to stronger conclusions, involving the choosability version of majority coloring. We also give further evidence towards the existence of majority-$3$-colorings by showing that every digraph has a fractional majority 3.9602-coloring. Moreover we show that every digraph with large enough minimum out-degree has a fractional majority $(2+\varepsilon)$-coloring.

Author(s):  
Fairouz Beggas ◽  
Hamamache Kheddouci ◽  
Walid Marweni

In this paper, we introduce and study a new coloring problem of graphs called the double total dominator coloring. A double total dominator coloring of a graph [Formula: see text] with minimum degree at least 2 is a proper vertex coloring of [Formula: see text] such that each vertex has to dominate at least two color classes. The minimum number of colors among all double total dominator coloring of [Formula: see text] is called the double total dominator chromatic number, denoted by [Formula: see text]. Therefore, we establish the close relationship between the double total dominator chromatic number [Formula: see text] and the double total domination number [Formula: see text]. We prove the NP-completeness of the problem. We also examine the effects on [Formula: see text] when [Formula: see text] is modified by some operations. Finally, we discuss the [Formula: see text] number of square of trees by giving some bounds.


10.37236/947 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Mark E. Watkins ◽  
Xiangqian Zhou

The distinguishing number $\Delta(X)$ of a graph $X$ is the least positive integer $n$ for which there exists a function $f:V(X)\to\{0,1,2,\cdots,n-1\}$ such that no nonidentity element of $\hbox{Aut}(X)$ fixes (setwise) every inverse image $f^{-1}(k)$, $k\in\{0,1,2,\cdots,n-1\}$. All infinite, locally finite trees without pendant vertices are shown to be 2-distinguishable. A proof is indicated that extends 2-distinguishability to locally countable trees without pendant vertices. It is shown that every infinite, locally finite tree $T$ with finite distinguishing number contains a finite subtree $J$ such that $\Delta(J)=\Delta(T)$. Analogous results are obtained for the distinguishing chromatic number, namely the least positive integer $n$ such that the function $f$ is also a proper vertex-coloring.


2012 ◽  
Vol 49 (2) ◽  
pp. 156-169 ◽  
Author(s):  
Marko Jakovac ◽  
Iztok Peterin

A b-coloring is a proper vertex coloring of a graph such that each color class contains a vertex that has a neighbor in all other color classes and the b-chromatic number is the largest integer φ(G) for which a graph has a b-coloring with φ(G) colors. We determine some upper and lower bounds for the b-chromatic number of the strong product G ⊠ H, the lexicographic product G[H] and the direct product G × H and give some exact values for products of paths, cycles, stars, and complete bipartite graphs. We also show that the b-chromatic number of Pn ⊠ H, Cn ⊠ H, Pn[H], Cn[H], and Km,n[H] can be determined for an arbitrary graph H, when integers m and n are large enough.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 393
Author(s):  
Franklin Thamil Selvi.M.S ◽  
Amutha A ◽  
Antony Mary A

Given a simple graph , a harmonious coloring of  is the proper vertex coloring such that each pair of colors seems to appears together on at most one edge. The harmonious chromatic number of , denoted by  is the minimal number of colors in a harmonious coloring of . In this paper we have determined the harmonious chromatic number of some classes of Circulant Networks.  


2018 ◽  
Vol 2 (1) ◽  
pp. 30 ◽  
Author(s):  
Nuris Hisan Nazula ◽  
S Slamin ◽  
D Dafik

The local antimagic labeling on a graph G with |V| vertices and |E| edges is defined to be an assignment f : E --&gt; {1, 2,..., |E|} so that the weights of any two adjacent vertices u and v are distinct, that is, w(u)̸  ̸= w(v) where w(u) = Σe∈<sub>E(u)</sub> f(e) and E(u) is the set of edges incident to u. Therefore, any local antimagic labeling induces a proper vertex coloring of G where the vertex u is assigned the color w(u). The local antimagic chromatic number, denoted by χla(G), is the minimum number of colors taken over all colorings induced by local antimagic labelings of G. In this paper, we present the local antimagic chromatic number of unicyclic graphs that is the graphs containing exactly one cycle such as kite and cycle with two neighbour pendants.


YMER Digital ◽  
2021 ◽  
Vol 20 (10) ◽  
pp. 62-72
Author(s):  
S Saraswathi ◽  
◽  
M Poobalaranjani ◽  

An exact 2-distance coloring of a graph 𝐺 is a coloring of vertices of 𝐺 such that any two vertices which are at distance exactly 2 receive distinct colors. An exact 2-distance chromatic number𝑒2(𝐺) of 𝐺 is the minimum 𝑘 for which 𝐺 admits an exact 2-distance coloring with 𝑘 colors. A 𝑏-coloring of 𝐺 by 𝑘 colors is a proper 𝑘-vertex coloring such that in each color class, there exists a vertex called a color dominating vertex which has a neighbor in every other color class. A vertex that has a 2-neighbor in all other color classes is called an exact 2-distance color dominating vertex (or an 𝑒2-cdv). Exact 2-distance 𝑏-coloring (or an 𝑒2𝑏-coloring) of 𝐺 is an exact 2-distance coloring such that each color class contains an 𝑒2- cdv. An exact 2-distance 𝑏-chromatic number (or an 𝑒2𝑏-number) 𝑒2𝑏(𝐺) of 𝐺 is the largest integer 𝑘 such that 𝐺 has an 𝑒2𝑏-coloring with 𝑘colors. If for each integer𝑘, 𝑒2(𝐺) ≤ 𝑘 ≤ 𝑒2𝑏(𝐺), 𝐺 has an 𝑒2𝑏-coloring by 𝑘 colors, then 𝐺 is said to be an exact 2-distance 𝑏- continuous graph. In this paper, the 𝑒2𝑏-number𝑒2𝑏(𝐻𝑛)of the helm graph 𝐻𝑛is obtained and 𝑒2𝑏-continuity of 𝐻𝑛is discussed.


2016 ◽  
Vol 10 (1) ◽  
pp. 73-87 ◽  
Author(s):  
Bartłomiej Bosek ◽  
Sebastian Czerwiński ◽  
Jarosław Grytczuk ◽  
Paweł Rzążewski

A harmonious coloring of a k-uniform hypergraph H is a vertex coloring such that no two vertices in the same edge share the same color, and each k-element subset of colors appears on at most one edge. The harmonious number h(H) is the least number of colors needed for such a coloring. We prove that k-uniform hypergraphs of bounded maximum degree ? satisfy h(H) = O(k?k!m), where m is the number of edges in H which is best possible up to a multiplicative constant. Moreover, for every fixed ?, this constant tends to 1 with k ? ?. We use a novel method, called entropy compression, that emerged from the algorithmic version of the Lov?sz Local Lemma due to Moser and Tardos.


Author(s):  
M. Shakila ◽  
N. Rajakumari

Radio labeling of graphs is a specific type of graph labeling. The basic type of graph labeling is vertex coloring; this is where the vertices of a graph G are assigned different colors so that adjacent vertices are not given the same color. A k-coloring of a graph G is a coloring that uses k colors. The chromatic number of a graph G is the minimum value for k such that a k-coloring exists for G [2].


Author(s):  
S. Akbari ◽  
M. CHAVOOSHI ◽  
M. Ghanbari ◽  
S. Taghian

A proper vertex coloring of a graph [Formula: see text] is called a star coloring if every two color classes induce a forest whose each component is a star, which means there is no bicolored [Formula: see text] in [Formula: see text]. In this paper, we show that the Cartesian product of any two cycles, except [Formula: see text] and [Formula: see text], has a [Formula: see text]-star coloring.


2021 ◽  
Vol 5 (2) ◽  
pp. 110
Author(s):  
Zein Rasyid Himami ◽  
Denny Riama Silaban

Let <em>G</em>=(<em>V</em>,<em>E</em>) be connected graph. A bijection <em>f </em>: <em>E</em> → {1,2,3,..., |<em>E</em>|} is a local antimagic of <em>G</em> if any adjacent vertices <em>u,v</em> ∈ <em>V</em> satisfies <em>w</em>(<em>u</em>)≠ <em>w</em>(<em>v</em>), where <em>w</em>(<em>u</em>)=∑<sub>e∈E(u) </sub><em>f</em>(<em>e</em>), <em>E</em>(<em>u</em>) is the set of edges incident to <em>u</em>. When vertex <em>u</em> is assigned the color <em>w</em>(<em>u</em>), we called it a local antimagic vertex coloring of <em>G</em>. A local antimagic chromatic number of <em>G</em>, denoted by <em>χ</em><sub>la</sub>(<em>G</em>), is the minimum number of colors taken over all colorings induced by the local antimagic labeling of <em>G</em>. In this paper, we determine the local antimagic chromatic number of corona product of friendship and fan with null graph on <em>m</em> vertices, namely, <em>χ</em><sub>la</sub>(<em>F</em><sub>n</sub> ⊙ \overline{K_m}) and <em>χ</em><sub>la</sub>(<em>f</em><sub>(1,n)</sub> ⊙ \overline{K_m}).


Sign in / Sign up

Export Citation Format

Share Document