scholarly journals Complete Acyclic Colorings

10.37236/8752 ◽  
2020 ◽  
Vol 27 (2) ◽  
Author(s):  
Stefan Felsner ◽  
Winfried Hochstättler ◽  
Kolja Knauer ◽  
Raphael Steiner

We study two parameters that arise from the dichromatic number and the vertex-arboricity in the same way that the achromatic number comes from the chromatic number. The adichromatic number of a digraph is the largest number of colors its vertices can be colored with such that every color induces an acyclic subdigraph but merging any two colors yields a monochromatic directed cycle. Similarly, the a-vertex arboricity of an undirected graph is the largest number of colors that can be used such that every color induces a forest but merging any two yields a monochromatic cycle. We study the relation between these parameters and their behavior with respect to other classical parameters such as degeneracy and most importantly feedback vertex sets.

2016 ◽  
Vol 4 ◽  
Author(s):  
BOJAN MOHAR ◽  
HEHUI WU

The dichromatic number of a graph $G$ is the maximum integer $k$ such that there exists an orientation of the edges of $G$ such that for every partition of the vertices into fewer than $k$ parts, at least one of the parts must contain a directed cycle under this orientation. In 1979, Erdős and Neumann-Lara conjectured that if the dichromatic number of a graph is bounded, so is its chromatic number. We make the first significant progress on this conjecture by proving a fractional version of the conjecture. While our result uses a stronger assumption about the fractional chromatic number, it also gives a much stronger conclusion: if the fractional chromatic number of a graph is at least $t$, then the fractional version of the dichromatic number of the graph is at least ${\textstyle \frac{1}{4}}t/\log _{2}(2et^{2})$. This bound is best possible up to a small constant factor. Several related results of independent interest are given.


2015 ◽  
Vol 14 (06) ◽  
pp. 1550079 ◽  
Author(s):  
M. J. Nikmehr ◽  
S. Khojasteh

Let R be a commutative ring with identity, I its proper ideal and M be a unitary R-module. In this paper, we introduce and study a kind of graph structure of an R-module M with respect to proper ideal I, denoted by ΓI(RM) or simply ΓI(M). It is the (undirected) graph with the vertex set M\{0} and two distinct vertices x and y are adjacent if and only if [x : M][y : M] ⊆ I. Clearly, the zero-divisor graph of R is a subgraph of Γ0(R); this is an important result on the definition. We prove that if ann R(M) ⊆ I and H is the subgraph of ΓI(M) induced by the set of all non-isolated vertices, then diam (H) ≤ 3 and gr (ΓI(M)) ∈ {3, 4, ∞}. Also, we prove that if Spec (R) and ω(Γ Nil (R)(M)) are finite, then χ(Γ Nil (R)(M)) ≤ ∣ Spec (R)∣ + ω(Γ Nil (R)(M)). Moreover, for a secondary R-module M and prime ideal P, we determine the chromatic number and the clique number of ΓP(M), where ann R(M) ⊆ P. Among other results, it is proved that for a semisimple R-module M with ann R(M) ⊆ I, ΓI(M) is a forest if and only if ΓI(M) is a union of isolated vertices or a star.


2012 ◽  
Vol 12 (02) ◽  
pp. 1250151 ◽  
Author(s):  
M. BAZIAR ◽  
E. MOMTAHAN ◽  
S. SAFAEEYAN

Let M be an R-module. We associate an undirected graph Γ(M) to M in which nonzero elements x and y of M are adjacent provided that xf(y) = 0 or yg(x) = 0 for some nonzero R-homomorphisms f, g ∈ Hom (M, R). We observe that over a commutative ring R, Γ(M) is connected and diam (Γ(M)) ≤ 3. Moreover, if Γ(M) contains a cycle, then gr (Γ(M)) ≤ 4. Furthermore if ∣Γ(M)∣ ≥ 1, then Γ(M) is finite if and only if M is finite. Also if Γ(M) = ∅, then any nonzero f ∈ Hom (M, R) is monic (the converse is true if R is a domain). For a nonfinitely generated projective module P we observe that Γ(P) is a complete graph. We prove that for a domain R the chromatic number and the clique number of Γ(M) are equal. When R is self-injective, we will also observe that the above adjacency defines a covariant functor between a subcategory of R-MOD and the Category of graphs.


2016 ◽  
Vol 1 (1) ◽  
pp. 22 ◽  
Author(s):  
Ika Hesti Agustin ◽  
D. Dafik ◽  
A. Y. Harsya

Let $G$ be a simple, connected and undirected graph. Let $r,k$ be natural number. By a proper $k$-coloring  of a graph $G$, we mean a map $ c : V (G) \rightarrow S$, where $|S| = k$, such that any two adjacent vertices receive different colors. An $r$-dynamic $k$-coloring is a proper $k$-coloring $c$ of $G$ such that $|c(N (v))| \geq min\{r, d(v)\}$ for each vertex $v$ in $V(G)$, where $N (v)$ is the neighborhood of $v$ and $c(S) = \{c(v) : v \in S\}$ for a vertex subset $S$ . The $r$-dynamic chromatic number, written as $\chi_r(G)$, is the minimum $k$ such that $G$ has an $r$-dynamic $k$-coloring. Note that the $1$-dynamic chromatic number of graph is equal to its chromatic number, denoted by $\chi(G)$, and the $2$-dynamic chromatic number of graph has been studied under the name a dynamic chromatic number, denoted by $\chi_d(G)$. By simple observation it is easy to see that $\chi_r(G)\le \chi_{r+1}(G)$, however $\chi_{r+1}(G)-\chi_r(G)$ can be arbitrarily large, for example $\chi(Petersen)=2, \chi_d(Petersen)=3$, but $\chi_3(Petersen)=10$. Thus, finding an exact values of $\chi_r(G)$ is significantly useful. In this paper, we will show some exact values of $\chi_r(G)$ when $G$ is an operation of special graphs.


10.37236/9906 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Pierre Aboulker ◽  
Pierre Charbit ◽  
Reza Naserasr

The dichromatic number of a digraph $D$ is the minimum number of colors needed to color its vertices  in such a way that each color class induces an acyclic digraph. As it generalizes the notion of the chromatic number of graphs, it has become the focus of numerous works. In this work we look at possible extensions of the Gyárfás-Sumner conjecture. In particular, we conjecture a simple characterization  of sets $\mathcal F$ of three digraphs such that every digraph with sufficiently large dichromatic number must contain a member of $\mathcal F$ as an induced subdigraph.  Among notable results, we prove that oriented $K_4$-free graphs without a directed path of length $3$ have bounded dichromatic number where a bound of $414$ is provided. We also show that an orientation of a complete multipartite graph with no directed triangle is $2$-colorable. To prove these results we introduce the notion of nice sets that might be of independent interest.


2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Michael Anastos ◽  
Ander Lamaison ◽  
Raphael Steiner ◽  
Tibor Szabó

A majority coloring of a directed graph is a vertex-coloring in which every vertex has the same color as at most half of its out-neighbors. Kreutzer, Oum, Seymour, van der Zypen and Wood proved that every digraph has a majority $4$-coloring and conjectured that every digraph admits a majority $3$-coloring. They observed that the Local Lemma implies the conjecture for digraphs of large enough minimum out-degree if, crucially, the maximum in-degree is bounded by a(n exponential) function of the minimum out-degree. Our goal in this paper is to develop alternative methods that allow the verification of the conjecture for natural, broad digraph classes, without any restriction on the in-degrees. Among others, we prove the conjecture 1) for digraphs with chromatic number at most $6$ or dichromatic number at most $3$, and thus for all planar digraphs; and 2) for digraphs with maximum out-degree at most $4$. The benchmark case of $r$-regular digraphs remains open for $r \in [5,143]$. Our inductive proofs depend on loaded inductive statements about precoloring extensions of list-colorings. This approach also gives rise to stronger conclusions, involving the choosability version of majority coloring. We also give further evidence towards the existence of majority-$3$-colorings by showing that every digraph has a fractional majority 3.9602-coloring. Moreover we show that every digraph with large enough minimum out-degree has a fractional majority $(2+\varepsilon)$-coloring.


2018 ◽  
Vol 5 (2) ◽  
pp. 7-10
Author(s):  
Lavinya V ◽  
Vijayalakshmi D ◽  
Priyanka S

A Star coloring of an undirected graph G is a proper vertex coloring of G in which every path on four vertices contains at least three distinct colors. The Star chromatic number of an undirected graph Χs(G), denoted by(G) is the smallest integer k for which G admits a star coloring with k colors. In this paper, we obtain the exact value of the Star chromatic number of Middle graph of Tadpole graph, Snake graph, Ladder graph and Sunlet graphs denoted by M(Tm,n), M(Tn),M(Ln) and M(Sn) respectively.


2013 ◽  
Vol 12 (05) ◽  
pp. 1250218 ◽  
Author(s):  
ERGÜN YARANERI

Let V be a left R-module where R is a (not necessarily commutative) ring with unit. The intersection graph [Formula: see text] of proper R-submodules of V is an undirected graph without loops and multiple edges defined as follows: the vertex set is the set of all proper R-submodules of V, and there is an edge between two distinct vertices U and W if and only if U ∩ W ≠ 0. We study these graphs to relate the combinatorial properties of [Formula: see text] to the algebraic properties of the R-module V. We study connectedness, domination, finiteness, coloring, and planarity for [Formula: see text]. For instance, we find the domination number of [Formula: see text]. We also find the chromatic number of [Formula: see text] in some cases. Furthermore, we study cycles in [Formula: see text], and complete subgraphs in [Formula: see text] determining the structure of V for which [Formula: see text] is planar.


2005 ◽  
Vol Vol. 7 ◽  
Author(s):  
David R. Wood

International audience Let G be a graph with chromatic number χ (G). A vertex colouring of G is \emphacyclic if each bichromatic subgraph is a forest. A \emphstar colouring of G is an acyclic colouring in which each bichromatic subgraph is a star forest. Let χ _a(G) and χ _s(G) denote the acyclic and star chromatic numbers of G. This paper investigates acyclic and star colourings of subdivisions. Let G' be the graph obtained from G by subdividing each edge once. We prove that acyclic (respectively, star) colourings of G' correspond to vertex partitions of G in which each subgraph has small arboricity (chromatic index). It follows that χ _a(G'), χ _s(G') and χ (G) are tied, in the sense that each is bounded by a function of the other. Moreover the binding functions that we establish are all tight. The \emphoriented chromatic number χ ^→(G) of an (undirected) graph G is the maximum, taken over all orientations D of G, of the minimum number of colours in a vertex colouring of D such that between any two colour classes, all edges have the same direction. We prove that χ ^→(G')=χ (G) whenever χ (G)≥ 9.


2011 ◽  
Vol 267 ◽  
pp. 334-337
Author(s):  
Wen Sheng Li ◽  
Hua Ming Xing

The concept of minus domination number of an undirected graph is transferred to directed graphs. Exact values are found for the directed cycle and particular types of tournaments. Furthermore, we present some lower bounds for minus domination number in terms of the order, the maximum degree, the maximum outdegree and the minimum outdegree of a directed graph.


Sign in / Sign up

Export Citation Format

Share Document