interface state density
Recently Published Documents


TOTAL DOCUMENTS

385
(FIVE YEARS 11)

H-INDEX

39
(FIVE YEARS 1)

Author(s):  
Takuma Doi ◽  
Shigehisa Shibayama ◽  
Mitsuo Sakashita ◽  
Noriyuki Taoka ◽  
Mitsuaki Shimizu ◽  
...  

Abstract We investigated the effect of interface state density on the field-effect mobility (μ FE) of 4H-SiC counter-doped MOSFETs. We fabricated counter-doped MOSFETs with three types of gate oxides i.e., SiO2, Al2O3 formed via atomic layer deposition, and Al2O3 formed via metal layer oxidation (MLO). A maximum μ FE of 80 cm2/Vs was obtained for the MLO-Al2O3 FET, and this value was 60% larger than that of the SiO2 FET. In addition, we evaluated the electron mobility in the neutral channel (μ neutral) and the rate of increase in the free electron density in the neutral channel with respect to the gate voltage (dN neutral/dV G), which are factors determining μ FE. μ neutral depended only on the channel depth, independent of the type of gate oxide. In addition, dN neutral/dV G was significantly low in the SiO2 FET because of carrier trapping at the high density of interface states, whereas this effect was smaller in the Al2O3 FETs.



Author(s):  
Jianmin Shi ◽  
Xinwei Wang ◽  
Xiuyu Zhang ◽  
Jianming Xue ◽  
Xun Guo ◽  
...  

Abstract The properties of oxide trapped charges and interface state density in the metal oxide semiconductor (MOS) capacitors with an Au/HfO2-SiO2/Si structure were investigated under irradiation of 14 MeV neutron and 60Co gamma-ray. In the mixed neutron and gamma irradiation environment, the formation of the oxide trapped charges in the HfO2-SiO2 layer is determined by the total deposited ionization energy, i.e. the sum of ionization energy deposition of the neutrons and the accompanying gamma rays, while the influence of the displacement damage caused by 14 MeV neutrons can be ignored. The interface state density depends not only on the ionizing energy loss (IEL) but also the non-ionizing energy loss (NIEL), and NIEL plays a major role below the critical neutron fluence of 4.5×1012 n/cm2. The synergistic effect of the interface state is observed increases with energy deposition in the oxide at lower fluences, while decreasing above the critical fluence. These results confirm the existence of the synergistic effect of neutron and gamma irradiation in damaging HfO2 MOS devices.







Author(s):  
Khushabu Agrawal ◽  
Vilas S. Patil ◽  
Fida Ali ◽  
Matheus Rabelo ◽  
Won Jong Yoo ◽  
...  


Author(s):  
Şükrü Karataş ◽  
Kadir Ejderha ◽  
Ö. Faruk Bakkaloğlu ◽  
Hasan Efeoğlu ◽  
A.Mecit Türüt


2021 ◽  
Vol 314 ◽  
pp. 95-98
Author(s):  
Tomoki Hirano ◽  
Kenya Nishio ◽  
Takashi Fukatani ◽  
Suguru Saito ◽  
Yoshiya Hagimoto ◽  
...  

In this work, we characterized the wet chemical atomic layer etching of an InGaAs surface by using various surface analysis methods. For this etching process, H2O2 was used to create a self-limiting oxide layer. Oxide removal was studied for both HCl and NH4OH solutions. Less In oxide tended to remain after the HCl treatment than after the NH4OH treatment, so the combination of H2O2 and HCl is suitable for wet chemical atomic layer etching. In addition, we found that repetition of this etching process does not impact on the oxide amount, surface roughness, and interface state density. Thus, nanoscale etching of InGaAs with no impact on the surface condition is possible with this method.





2021 ◽  
Vol 13 (4) ◽  
pp. 04002-1-04002-5
Author(s):  
A. H. Khediri ◽  
◽  
A. Talbi ◽  
M. A. Benamara ◽  
Z. Benamara ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document