gold layer thickness
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 0)

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6603
Author(s):  
Samuel Osifeso ◽  
Suoda Chu ◽  
K. Nakkeeran

We report a statistical approach to model the resonant peak wavelength (RPW) equation(s) of a photonic crystal fibre (PCF)-based surface plasmon resonance (SPR) sensors in terms of the PCF structural parameters (air-hole diameter, pitch, core diameter and gold layer thickness) at various tolerance levels. Design of experiments (statistical tool) is used to investigate the role played by the PCF structural parameters for sensing performance evaluation—RPW, across three tolerance levels (±2%, ±5% and ±10%). Pitch of the hollow-core PCF was discovered to be the major influencing parameter for the sensing performance (RPW) of the PCF-based SPR sensor while the inner metal (gold) layer thickness and core diameter are the least contributing parameters. This novel statistical method to derive the sensing performance parameter(s) of the PCF-based SPR sensors can be applied effectively and efficiently in the designing, characterisation, tolerance analysis not only at the research level, but also in optical fibre sensor fabrication industry to improve efficiency and lower cost.


2020 ◽  
Vol 10 ◽  
pp. 184798042098211
Author(s):  
Najmiah Radiah Mohamad ◽  
Mohd Farhanulhakim Mohd Razip Wee ◽  
Mohd Ambri Mohamed ◽  
Azrul Azlan Hamzah ◽  
P Susthitha Menon

Kretschmann-based surface plasmon resonance sensor utilizing chromium and gold nanofilms is ideal for label-free biomedical sensing. In this work, Taguchi’s L9 orthogonal array method was used to optimize the effects of three control factors and noise factor, which are the incident optical wavelength, chromium and gold nanofilm thicknesses, and their root-mean-square surface roughness, on the performance of the Kretschmann-based surface plasmon resonance sensor. The control factors were varied at three levels for a novel multi-response optimization of the Kretschmann-based surface plasmon resonance sensor for the minimum reflectivity, the full-width-at-half-maximum, and the sensitivity of 3% glucose detection, executed using Lumerical’s two-dimensional finite-difference time-domain method. Using Taguchi method, the best control factor setting in air was A3B2C2 corresponding to 785 nm optical wavelength, 0.5 nm chromium, and 50 nm gold layer thickness, respectively, with minimum reflectivity of 0.0017%, full-width-at-half-maximum of 0.4759°, and glucose-sensing sensitivity of 106.73°·RIU−1. The detection accuracy and quality factor were 0.01 and 224.26 RIU−1, respectively. It was also indicated that chromium nanofilm thickness of 0.5–3 nm and its root-mean-square surface roughness has a negligible factor effect compared to other control factors. Taguchi method’s factor effect analysis showed that for chromium layer thickness of 1–3 nm, the minimum reflectivity values are predominantly determined by the gold layer thickness with 75% factor effect, followed by optical wavelength with 11%. Factor effect of full-width-at-half-maximum is determined by optical wavelength (57%), followed by gold layer thickness (38%). Sensitivity is 88% determined by optical wavelength and 10% determined by gold layer thickness. The Kretschmann-based surface plasmon resonance glucose sensor with the best glucose-sensing sensitivity was at optical wavelength of 632.8 nm with a higher sensitivity value of 163.415°·RIU−1 but lower detection accuracy and quality factor values of 0.001 and 24.86 RIU−1, respectively, compared to near-infrared wavelength of 785 nm. In conclusion, finite-difference time-domain and Taguchi method is suitable for multi-response optimization of control and noise factors of Kretschmann-based surface plasmon resonance sensors.


2003 ◽  
Vol 125 (4) ◽  
pp. 609-616 ◽  
Author(s):  
G. B. Dou ◽  
Y. C. Chan ◽  
Johan Liu

In anisotropic conductive adhesive (ACA) interconnections, the particles are electrical conductors providing current paths in the fine pitch electronic packaging as well as physical parts connecting with the chip bumps and the substrate pads through the mechanical deformation interfaces. The primary object of this fundamental research is to reveal the electrical conductive characteristics of Ni/Au coated resin particles. Such an ACA particle resistance is resulted from two metal coated layers, which are two parallel resistors in the circuit determined by the particle transformation degree. In order to investigate the effect of the particle transformation degree upon the particle resistance, the particle transformation factor is defined. The mathematical electrical resistance function of an ACA particle, an integral function of the transformation factor and the particle geometries, resin diameter, nickel layer thickness, and gold layer thickness, is worked out from the physical model of an ACA particle. To carry out the solutions of the function, MathCAD software is applied. According to the numerical solutions, the deeper the particle transformation, the thicker the metal coated layer thicknesses and the longer the resin diameter are, the lower the particle resistance is. In conclusion, it is stated that the ACA particle resistance is determined by the particle transformation and the particle geometries, however, the transformation and the nickel layer thickness are more sensitive than the resin diameter and the gold layer thickness. Finally, the resistance function will explain the conductive mechanism of the deformed ACA particle.


2002 ◽  
Vol 736 ◽  
Author(s):  
Stéphanie Périchon Lacour ◽  
Zhenyu Huang ◽  
Zhigang Suo ◽  
Sigurd Wagner

ABSTRACTThe electro-mechanical response of thin gold layers evaporated onto silicone substrates is reported. Gold layers are prepared either thin and flat or thin and wavy on the compliant substrate. The electrical resistance of gold/silicone stripes is measured and analyzed during tensile deformation. For a 100-nm thick gold layer evaporated on a 1-mm thick silicone membrane, we have observed electrical continuity up to ∼ 22 % strain. This maximum strain decreases when the gold layer thickness is raised.


Sign in / Sign up

Export Citation Format

Share Document