low temperature crystallization
Recently Published Documents


TOTAL DOCUMENTS

270
(FIVE YEARS 38)

H-INDEX

29
(FIVE YEARS 5)

2021 ◽  
pp. 2107850
Author(s):  
Tian Du ◽  
Thomas J. Macdonald ◽  
Ruo Xi Yang ◽  
Meng Li ◽  
Zhongyao Jiang ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
pp. 35-43
Author(s):  
Miftahul Wahidatun Ni’mah ◽  
Diah Dwi Lestari ◽  
Ayuni Rizma Maulida ◽  
Umar Hafidz Asy'ari Hasbullah

Coffee is one of Indonesia's leading plantation commodities, which is ranked third in the world. Currently, coffee-based drinks have become a lifestyle in the millennial era. The high interest in coffee affects the economy of the community. Various efforts were made to further encourage the level of coffee consumption, especially in the form of beverages. On the other hand, it is necessary to diversify the product by highlighting the technology side, such as making effervescent which is easier, more practical, and can be enjoyed directly with cold water. Effervescent is known as a product that can cause gas bubbles as a result of the reaction of acids and bases when dissolved in water. The resulting gas bubbles are carbon dioxide which gives a sparkling effect (a taste sensation like sparkling water). The use of coffee as an effervescent raw material is related to its taste, bioactive compounds, and antioxidants. Coffee extract powder can be made from robusta and arabica coffee roasted at medium level with low-temperature crystallization, spray drying, freeze drying, and vacuum drying. Other materials that need to be added such as acid sources, bases, fillers, and binders can affect the effervescent characteristics such as tablet hardness, moisture content, hygroscopicity, and dissolution time. The recommended composition is citric acid, sodium bicarbonate, dextrin, and PVP (Polyvinilpyrrolydone).


2021 ◽  
Vol 138 ◽  
pp. 111241
Author(s):  
Boseon Yun ◽  
Tan Tan Bui ◽  
Paul Lee ◽  
Hayeong Jeong ◽  
Seung Beom Shin ◽  
...  

2021 ◽  
Vol 7 (17) ◽  
pp. eabe3326
Author(s):  
Paramvir Ahlawat ◽  
Alexander Hinderhofer ◽  
Essa A. Alharbi ◽  
Haizhou Lu ◽  
Amita Ummadisingu ◽  
...  

It is well established that the lack of understanding the crystallization process in a two-step sequential deposition has a direct impact on efficiency, stability, and reproducibility of perovskite solar cells. Here, we try to understand the solid-solid phase transition occurring during the two-step sequential deposition of methylammonium lead iodide and formamidinium lead iodide. Using metadynamics, x-ray diffraction, and Raman spectroscopy, we reveal the microscopic details of this process. We find that the formation of perovskite proceeds through intermediate structures and report polymorphs found for methylammonium lead iodide and formamidinium lead iodide. From simulations, we discover a possible crystallization pathway for the highly efficient metastable α phase of formamidinium lead iodide. Guided by these simulations, we perform experiments that result in the low-temperature crystallization of phase-pure α-formamidinium lead iodide.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiali Peng ◽  
Chelsea Q. Xia ◽  
Yalun Xu ◽  
Ruiming Li ◽  
Lihao Cui ◽  
...  

AbstractMetal halide perovskites have fascinated the research community over the past decade, and demonstrated unprecedented success in optoelectronics. In particular, perovskite single crystals have emerged as promising candidates for ionization radiation detection, due to the excellent opto-electronic properties. However, most of the reported crystals are grown in organic solvents and require high temperature. In this work, we develop a low-temperature crystallization strategy to grow CsPbBr3 perovskite single crystals in water. Then, we carefully investigate the structure and optoelectronic properties of the crystals obtained, and compare them with CsPbBr3 crystals grown in dimethyl sulfoxide. Interestingly, the water grown crystals exhibit a distinct crystal habit, superior charge transport properties and better stability in air. We also fabricate X-ray detectors based on the CsPbBr3 crystals, and systematically characterize their device performance. The crystals grown in water demonstrate great potential for X-ray imaging with enhanced performance metrics.


Sign in / Sign up

Export Citation Format

Share Document