diode mode
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Tao An ◽  
Suiyang Liu

Abstract This paper proposes an inverted ternary organic photodetector (OPD), whose structure is ITO/PEIE/PC61BM/P3HT:PCPDTBT/MoO3 /Al. The use of PEIE as the cathode buffer layer avoids the influence of acidic PEDOT:PSS on the surface and life of the conventional device . The preparation of the ternary active layer ensures the photoelectric characteristics of the device in the visible-infrared broad spectrum range. In this experiment, the effect of PEIE thickness on the working mode of the device was studied by changing the concentration of the spin-coated PEIE solution. Finally, when the solution of PEIE is less than 0.45wt%, the device works in the diode mode, on the contrary, it works in the photoconductive mode. And under 550nm illumination (optical power 4.02mW/cm2) , the device achieves a responsivity of 1.64A/W and an external quantum efficiency of 370%.


Author(s):  
Yousif Atalla ◽  
Yasir Hashim ◽  
Abdul Nasir Abd. Ghafar ◽  
Waheb A. Jabbar

This paper shows the temperature sensitivity of FinFET and the possibility of using FinFET as a temperature Nano sensor based on Fin width of transistor. The multi-gate field effect transistor (MuGFET) simulation tool is used to examine the temperature effect on FinFET characteristics. Current-voltage characteristics with various temperatures and channel Fin width (WF= 5,10,20,40 and 80 nm) are at first simulated, the diode mode connection has been used in this study. The best temperature sensitivity of the FinFET is has been considered under the biggest ∆I at the working voltage VDD with range of 0–5 V. According to the results, the temperature sensitivity increased linearly with all the range of channel Fin width (5-80 nm), also, the lower gate Fin width (WF=5nm) with higher sensitivity can achieved with lower working voltage (VDD=1.25 V).


2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
V.I. Smirnov ◽  
◽  
V.A. Sergeev ◽  
A.A. Gavrikov ◽  
A.A. Kulikov ◽  
...  

2017 ◽  
Vol 35 (1) ◽  
pp. 173-180 ◽  
Author(s):  
A. Kavitha ◽  
R. Kannan ◽  
S. Rajashabala

AbstractThe present paper describes the effect of target power on the properties of Ti thin films prepared by DC magnetron sputtering with (triode mode) and without (diode mode) supported discharge. The traditional diode magnetron sputtering with an addition of a hot filament has been used to sustain the discharge at a lower pressure. The effect of target power (60, 80, 100 and 120 W) on the physical properties of Ti thin films has been studied in diode and triode modes. XRD studies showed that the Ti thin films prepared at a target power up to 100 W in diode mode were amorphous in nature. The Ti thin films exhibited crystalline structure at much lower target power of 80 W with a preferred orientation along (0 0 2) plane. The grain size of Ti thin films prepared in triode mode increased from 64 nm to 80 nm, whereas in diode mode, the grain size increased from 2 nm to 5 nm. EDAX analysis confirmed that the incorporation of reactive gases was lower in triode mode compared to diode mode. The electrical resistivity of Ti thin films deposited in diode mode was found to be 85 µΩ⋅cm (target power 120 W). The electrical resistivity of Ti thin films in triode mode was found to be deceased to 15.2 µΩ⋅cm (target power 120 W).


Sign in / Sign up

Export Citation Format

Share Document