somatic cell type
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Andrew R Norman ◽  
Lauren Byrnes ◽  
Jeremy R Reiter

GC-1 spg is an immortalized cell line derived from an adult mouse testis and reported to be most similar to spermatocytes, a male germ cell-type. However, immunofluorescence indicates that GC-1 spg cells express WT1, a marker of testis somatic cells, and do not express markers of germ cells. Transcriptomic profiling indicate GC-1 cells are most similar to Leydig cells. Therefore, we conclude that GC-1 spg cells are most similar to testis somatic cells.


2011 ◽  
Vol 13 (4) ◽  
pp. 331-344 ◽  
Author(s):  
Pollyanna Agnes Tat ◽  
Huseyin Sumer ◽  
Daniele Pralong ◽  
Paul John Verma

2007 ◽  
Vol 26 (22) ◽  
pp. 4683-4693 ◽  
Author(s):  
Yuhui Liu ◽  
Nancy Yeh ◽  
Xin-Hua Zhu ◽  
Margaret Leversha ◽  
Carlos Cordon-Cardo ◽  
...  

2003 ◽  
Vol 358 (1436) ◽  
pp. 1389-1395 ◽  
Author(s):  
Philippe Collas

Methods for directly turning a somatic cell type into another type (a process referred to as transdifferentiation) would be beneficial for producing replacement cells for therapeutic applications. Adult stem cells have been shown to display a broader differentiation potential than anticipated and may contribute to tissues other than those in which they reside. In addition, novel transdifferentiation strategies are being developed. I report recent results on the functional reprogramming of a somatic cell using a nuclear and cytoplasmic extract derived from another somatic cell type. The reprogramming of 293T fibroblasts in an extract from T cells is evidenced by nuclear uptake and the assembly of transcription factors, induction of activity of a chromatin remodelling complex, changes in chromatin composition and activation of lymphoid cell–specific genes. The reprogrammed cells express T–cell–specific surface molecules and a complex regulatory function. Reprogramming cells in cell–free extracts may create possibilities for producing replacement cells for therapeutic applications. The system may also constitute a powerful tool to examine the mechanisms of nuclear reprogramming, at least as they occur in vitro .


1991 ◽  
Vol 35 (1) ◽  
pp. 269 ◽  
Author(s):  
J.M. Scodras ◽  
J.W. Pollard ◽  
K.J. Betteridge

1973 ◽  
pp. 255-267 ◽  
Author(s):  
ALLISON L. BURNETT ◽  
RALPH LOWELL ◽  
MARSHALL N. CYRLIN

Sign in / Sign up

Export Citation Format

Share Document