scholarly journals Inertia Effects in the Dynamics of Viscous Fingering of Miscible Fluids in Porous Media: Circular Hele-Shaw Cell Configuration

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6432
Author(s):  
Hamid Ait Abderrahmane ◽  
Shahid Rabbani ◽  
Mohamed Sassi

We present a numerical study of viscous fingering occurring during the displacement of a high viscosity fluid by low viscosity fluid in a circular Hele-Shaw cell. This study assumes that the fluids are miscible and considers the effects of inertial forces on fingering morphology, mixing, and displacement efficiency. This study shows that inertia has stabilizing effects on the fingering instability and improves the displacement efficiency at a high log-mobility-viscosity ratio between displacing and displaced fluids. Under certain conditions, inertia slightly reduces the finger-split phenomenon and the mixing between the two fluids.

2021 ◽  
Author(s):  
Rencheng Dong ◽  
Mary F. Wheeler ◽  
Hang Su ◽  
Kang Ma

Abstract Acid fracturing technique is widely applied to stimulate the productivity of carbonate reservoirs. The acid-fracture conductivity is created by non-uniform acid etching on fracture surfaces. Heterogeneous mineral distribution of carbonate reservoirs can lead to non-uniform acid etching during acid fracturing treatments. In addition, the non-uniform acid etching can be enhanced by the viscous fingering mechanism. For low-perm carbonate reservoirs, by multi-stage alternating injection of a low-viscosity acid and a high-viscosity polymer pad fluid during acid fracturing, the acid tends to form viscous fingers and etch fracture surfaces non-uniformly. To accurately predict the acid-fracture conductivity, this paper developed a 3D acid fracturing model to compute the rough acid fracture geometry induced by multi-stage alternating injection of pad and acid fluids. Based on the developed numerical simulator, we investigated the effects of viscous fingering, perforation design and stage period on the acid etching process. Compared with single-stage acid injection, multi-stage alternating injection of pad and acid fluids leads to narrower and longer acid-etched channels.


2019 ◽  
Vol 869 ◽  
Author(s):  
Alireza Hooshanginejad ◽  
Benjamin C. Druecke ◽  
Sungyon Lee

We present experiments and theory for viscous fingering of a suspension of non-colloidal particles undergoing radial flow in a Hele-Shaw cell. As the suspension displaces air, shear-induced migration causes particles to move faster than the average suspension velocity and to accumulate on the suspension–air interface. The resultant particle accumulation generates a pattern in which low-concentration, low-viscosity suspension displaces high-concentration, high-viscosity suspension and is unstable due to the classic Saffman–Taylor instability mechanism. While the destabilising mechanism is well-understood, what remains unknown is the stabilising mechanism that suppresses fine fingers characteristic of miscible fingering. In this work, we demonstrate how the stable suspension–air interface interacts with the unstable miscible interface to set the critical wavelength. We present a linear stability analysis for the time-dependent radial flow and show that the wavenumber predicted by the analysis is in good agreement with parametric experiments investigating the effect of suspension concentration and gap thickness of the Hele-Shaw cell.


SPE Journal ◽  
2014 ◽  
Vol 19 (05) ◽  
pp. 974-985 ◽  
Author(s):  
Sahil Malhotra ◽  
Eric R. Lehman ◽  
Mukul M. Sharma

Summary New fracturing techniques, such as hybrid fracturing (Sharma et al. 2004), reverse-hybrid fracturing (Liu et al. 2007), and channel (HiWAY) fracturing (Gillard et al. 2010), have been deployed over the past few years to effectively place proppant in fractures. The goal of these methods is to increase the conductivity in the proppant pack, providing highly conductive paths for hydrocarbons to flow from the reservoir to the wellbore. This paper presents an experimental study on proppant placement by use of a new method of fracturing, referred to as alternate-slug fracturing. The method involves an alternate injection of low-viscosity and high-viscosity fluids, with proppant carried by the low-viscosity fluid. Alternate-slug fracturing ensures a deeper placement of proppant through two primary mechanisms: (i) proppant transport in viscous fingers, formed by the low-viscosity fluid, and (ii) an increase in drag force in the polymer slug, leading to better entrainment and displacement of any proppant banks that may have formed. Both these effects lead to longer propped-fracture length and better vertical placement of proppant in the fracture. In addition, the method offers lower polymer costs, lower pumping horsepower, smaller fracture widths, better control of fluid leakoff, less risk of tip screenouts, and less gel damage compared with conventional gel fracture treatments. Experiments are conducted in simulated fractures (slot cells) with fluids of different viscosity, with proppant being carried by the low-viscosity fluid. It is shown that viscous fingers of low-viscosity fluid and viscous sweeps by the high-viscosity fluid lead to a deeper placement of proppant. Experiments are also conducted to demonstrate slickwater fracturing, hybrid fracturing, and reverse-hybrid fracturing. Comparison shows that alternate-slug fracturing leads to the deepest and most-uniform placement of proppant inside the fracture. Experiments are also conducted to study the mixing of fluids over a wide range of viscosity ratios. Data are presented to show that the finger velocities and mixing-zone velocities increase with viscosity ratio up to viscosity ratios of approximately 350. However, at higher viscosity ratios, the velocities plateau, signifying no further effect of viscosity contrast on the growth of fingers and mixing zone. The data are an integral part of design calculations for alternate-slug-fracturing treatments.


2014 ◽  
Vol 53 (10) ◽  
pp. 4084-4095 ◽  
Author(s):  
Huibo Meng ◽  
Feng Wang ◽  
Yanfang Yu ◽  
Mingyuan Song ◽  
Jianhua Wu

Author(s):  
Peter Mora ◽  
Gabriele Morra ◽  
Dave A. Yuen ◽  
Ruben Juanes

AbstractWe conduct pore-scale simulations of two-phase flow using the 2D Rothman–Keller colour gradient lattice Boltzmann method to study the effect of wettability on saturation at breakthrough (sweep) when the injected fluid first passes through the right boundary of the model. We performed a suite of 189 simulations in which a “red” fluid is injected at the left side of a 2D porous model that is initially saturated with a “blue” fluid spanning viscosity ratios $$M = \nu _\mathrm{r}/\nu _\mathrm{b} \in [0.001,100]$$ M = ν r / ν b ∈ [ 0.001 , 100 ] and wetting angles $$\theta _\mathrm{w} \in [ 0^\circ ,180^\circ ]$$ θ w ∈ [ 0 ∘ , 180 ∘ ] . As expected, at low-viscosity ratios $$M=\nu _\mathrm{r}/\nu _\mathrm{b} \ll 1$$ M = ν r / ν b ≪ 1 we observe viscous fingering in which narrow tendrils of the red fluid span the model, and for high-viscosity ratios $$M \gg 1$$ M ≫ 1 , we observe stable displacement. The viscous finger morphology is affected by the wetting angle with a tendency for more rounded fingers when the injected fluid is wetting. However, rather than the expected result of increased saturation with increasing wettability, we observe a complex saturation landscape at breakthrough as a function of viscosity ratio and wetting angle that contains hills and valleys with specific wetting angles at given viscosity ratios that maximize sweep. This unexpected result that sweep does not necessarily increase with wettability has major implications to enhanced oil recovery and suggests that the dynamics of multiphase flow in porous media has a complex relationship with the geometry of the medium and the hydrodynamical parameters.


Soft Matter ◽  
2015 ◽  
Vol 11 (37) ◽  
pp. 7428-7432 ◽  
Author(s):  
Irmgard Bischofberger ◽  
Radha Ramachandran ◽  
Sidney R. Nagel

We uncover a novel global structure of viscous-fingering patterns controlled by the viscosity ratio of the two fluids: an inner region of complete displacement coexists with finger growth.


Author(s):  
Samuel Bright Olawale ◽  
Promise O. Longe ◽  
Samuel Felix Ofesi

AbstractThe most primitive hole challenge is cleaning the hole, which is more severe in deviated wells. This problem was tackled in this research via experimental analysis and graphical evaluations. To hit this aim, rheological parameters were experimentally obtained, and Noah’s model was used to determine cutting bed erosion time at varying heights. A graphical evaluation was done using a case study of deviated wells X and Y from a Niger Delta field. The result shows that low-viscosity fluid, KCL polymer fluid and high-viscosity fluid take 124, 283 and 342 min, respectively, to erode equal height as graphical evaluation shows that hole cleaning will grow complex on deviation. Thus, the deduction from this work in reducing non-productive time (NPT) related to hole cleaning in drilling operation is first, prior to making a trip, pumping low-viscosity fluid at a high flow rate. Secondly, during drilling, increasing drill string rotation in deviated wells can effectively stir the cuttings into the annulus above the low session of the hole.


Author(s):  
Ezequiel Medici ◽  
Jeffrey Allen

When a low viscosity fluid is forced to displace another immiscible fluid with a higher viscosity inside of a porous media a particular flow structure called viscous fingering is generated. The study of that particular flow structure has special relevance in understanding the diffusion process and the transport characteristics of a fluid inside of a porous media. This work examined the effect of two fundamental parameters like the injected volumetric flow rate and the domain aspect ratio over the viscous fingering pattern. In order to perform that parametric study, a set of numerical simulations using the 2D network simulator model are used. A large viscosity ratio between the injected and displaced fluid is used to focus the work only on the unstable behavior state.


2003 ◽  
Vol 125 (2) ◽  
pp. 354-364 ◽  
Author(s):  
X. Guan ◽  
R. Pitchumani

A volume tracking method was developed to simulate time-dependent unstable viscous fingering in a Hele-Shaw cell. The effect of finite viscosity ratio μr between displacing and displaced fluids and their interfacial tension σ on finger morphology is investigated. It is shown that there exist four distinct finger patterns, depending upon the viscosity ratio, μr, and Ca′, the modified capillary number for constant flow rate, or ΔPs˙W/σ, for constant driving pressure difference. Morphology diagrams are developed to identify the ranges of the dimensionless parameters corresponding to the various finger patterns. The simulation results are validated with experiments.


Fractals ◽  
1997 ◽  
Vol 05 (02) ◽  
pp. 221-227 ◽  
Author(s):  
Songyue Tang ◽  
Zhonglei Wei

Viscous fingering is investigated by experiment in a 2-dimensional radial Hele-Shaw cell and Monte Carlo stochastic simulation. Experimental results show that viscosity ratio between the driving and driven fluids determines whether or not viscous fingerings occur and that surface tension makes the viscous fingering patterns "fatter". Simulation patterns are in good agreement with experimental ones. The fractal dimensions of the viscous fingering patterns by both experiments and simulations are about Df=1.2-1.6.


Sign in / Sign up

Export Citation Format

Share Document