chloromuconate cycloisomerase
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 0)

H-INDEX

10
(FIVE YEARS 0)

2005 ◽  
Vol 187 (7) ◽  
pp. 2332-2340 ◽  
Author(s):  
Katrin Pollmann ◽  
Victor Wray ◽  
Dietmar H. Pieper

ABSTRACT To elucidate possible reasons for the recalcitrance of 2-chlorotoluene, the metabolism of chloromethylcatechols, formed after dioxygenation and dehydrogenation by Ralstonia sp. strain PS12 tetrachlorobenzene dioxygenase and chlorobenzene dihydrodiol dehydrogenase, was monitored using chlorocatechol dioxygenases and chloromuconate cycloisomerases partly purified from Ralstonia sp. strain PS12 and Wautersia eutropha JMP134. Two chloromethylcatechols, 3-chloro-4-methylcatechol and 4-chloro-3-methylcatechol, were formed from 2-chlorotoluene. 3-Chloro-4-methylcatechol was transformed into 5-chloro-4-methylmuconolactone and 2-chloro-3-methylmuconolactone. For mechanistic reasons neither of these cycloisomerization products can be dehalogenated by chloromuconate cycloisomerases, with the result that 3-chloro-4-methylcatechol cannot be mineralized by reaction sequences related to catechol ortho-cleavage pathways known thus far. 4-Chloro-3-methylcatechol is only poorly dehalogenated during enzymatic processing due to the kinetic properties of the chloromuconate cycloisomerases. Thus, degradation of 2-chlorotoluene via a dioxygenolytic pathway is evidently problematic. In contrast, 5-chloro-3-methylcatechol, the major dioxygenation product formed from 3-chlorotoluene, is subject to quantitative dehalogenation after successive transformation by chlorocatechol 1,2-dioxygenase and chloromuconate cycloisomerase, resulting in the formation of 2-methyldienelactone. 3-Chloro-5-methylcatechol is transformed to 2-chloro-4-methylmuconolactone.


2003 ◽  
Vol 69 (9) ◽  
pp. 5636-5642 ◽  
Author(s):  
Inna P. Solyanikova ◽  
Olga V. Moiseeva ◽  
Sjef Boeren ◽  
Marelle G. Boersma ◽  
Marina P. Kolomytseva ◽  
...  

ABSTRACT The present study describes the 19F nuclear magnetic resonance analysis of the conversion of 3-halocatechols to lactones by purified chlorocatechol 1,2-dioxygenase (ClcA2), chloromuconate cycloisomerase (ClcB2), and chloromuconolactone dehalogenase (ClcF) from Rhodococcus opacus 1cp grown on 2-chlorophenol. The 3-halocatechol substrates were produced from the corresponding 2-halophenols by either phenol hydroxylase from Trichosporon cutaneum or 2-hydroxybiphenyl 3-mono-oxygenase from Pseudomonas azelaica. Several fluoromuconates resulting from intradiol ring cleavage by ClcA2 were identified. ClcB2 converted 2-fluoromuconate to 5-fluoromuconolactone and 2-chloro-4-fluoromuconate to 2-chloro-4-fluoromuconolactone. Especially the cycloisomerization of 2-fluoromuconate is a new observation. ClcF catalyzed the dehalogenation of 5-fluoromuconolactone to cis-dienelactone. The ClcB2 and ClcF-mediated reactions are in line with the recent finding of a second cluster of chlorocatechol catabolic genes in R. opacus 1cp which provides a new route for the microbial dehalogenation of 3-chlorocatechol.


2002 ◽  
Vol 184 (19) ◽  
pp. 5402-5409 ◽  
Author(s):  
Anke Skiba ◽  
Volker Hecht ◽  
Dietmar Helmut Pieper

ABSTRACT Muconate cycloisomerases are known to catalyze the reversible conversion of 2-chloro-cis,cis-muconate by 1,4- and 3,6-cycloisomerization into (4S)-(+)-2-chloro- and (4R/5S)-(+)-5-chloromuconolactone. 2-Chloromuconolactone is transformed by muconolactone isomerase with concomitant dechlorination and decarboxylation into the antibiotic protoanemonin. The low k cat for this compound compared to that for 5-chloromuconolactone suggests that protoanemonin formation is of minor importance. However, since 2-chloromuconolactone is the initially predominant product of 2-chloromuconate cycloisomerization, significant amounts of protoanemonin were formed in reaction mixtures containing large amounts of muconolactone isomerase and small amounts of muconate cycloisomerase. Such enzyme ratios resemble those observed in cell extracts of benzoate-grown cells of Ralstonia eutropha JMP134. In contrast, cis-dienelactone was the predominant product formed by enzyme preparations, in which muconolactone isomerase was in vitro rate limiting. In reaction mixtures containing chloromuconate cycloisomerase and muconolactone isomerase, only minute amounts of protoanemonin were detected, indicating that only small amounts of 2-chloromuconolactone were formed by cycloisomerization and that chloromuconate cycloisomerase actually preferentially catalyzes a 3,6-cycloisomerization.


2002 ◽  
Vol 184 (19) ◽  
pp. 5261-5274 ◽  
Author(s):  
Katrin Pollmann ◽  
Stefan Kaschabek ◽  
Victor Wray ◽  
Walter Reineke ◽  
Dietmar H. Pieper

ABSTRACT Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4-dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are formed by TecA tetrachlorobenzene dioxygenase-mediated activation at two adjacent unsubstituted carbon atoms followed by TecB chlorobenzene dihydrodiol dehydrogenase-catalyzed rearomatization and then are channeled into a chlorocatechol ortho cleavage pathway involving a chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and dienelactone hydrolase. However, completely different metabolic routes were observed for the three dichloromethylcatechols analyzed. Whereas 3,4-dichloro-6-methylcatechol is quantitatively transformed into one dienelactone (5-chloro-2-methyldienelactone) and thus is degraded via a linear pathway, 3,5-dichloro-2-methylmuconate formed from 4,6-dichloro-3-methylcatechol is subject to both 1,4- and 3,6-cycloisomerization and thus is degraded via a branched metabolic route. 3,6-Dichloro-4-methylcatechol, on the first view, is transformed predominantly into one (2-chloro-3-methyl-trans-) dienelactone. In situ 1H nuclear magnetic resonance analysis revealed the intermediate formation of 2,5-dichloro-4-methylmuconolactone, showing that both 1,4- and 3,6-cycloisomerization occur with this muconate and indicating a degradation of the muconolactone via a reversible cycloisomerization reaction and the dienelactone-forming branch of the pathway. Diastereomeric mixtures of two dichloromethylmuconolactones were prepared chemically to proof such a hypothesis. Chloromuconate cycloisomerase transformed 3,5-dichloro-2-methylmuconolactone into a mixture of 2-chloro-5-methyl-cis- and 3-chloro-2-methyldienelactone, affording evidence for a metabolic route of 3,5-dichloro-2-methylmuconolactone via 3,5-dichloro-2-methylmuconate into 2-chloro-5-methyl-cis-dienelactone. 2,5-Dichloro-3-methylmuconolactone was transformed nearly exclusively into 2-chloro-3-methyl-trans-dienelactone.


2002 ◽  
Vol 184 (19) ◽  
pp. 5282-5292 ◽  
Author(s):  
Olga V. Moiseeva ◽  
Inna P. Solyanikova ◽  
Stefan R. Kaschabek ◽  
Janosch Gröning ◽  
Monika Thiel ◽  
...  

ABSTRACT The 4-chloro- and 2,4-dichlorophenol-degrading strain Rhodococcus opacus 1CP has previously been shown to acquire, during prolonged adaptation, the ability to mineralize 2-chlorophenol. In addition, homogeneous chlorocatechol 1,2-dioxygenase from 2-chlorophenol-grown biomass has shown relatively high activity towards 3-chlorocatechol. Based on sequences of the N terminus and tryptic peptides of this enzyme, degenerate PCR primers were now designed and used for cloning of the respective gene from genomic DNA of strain 1CP. A 9.5-kb fragment containing nine open reading frames was obtained on pROP1. Besides other genes, a gene cluster consisting of four chlorocatechol catabolic genes was identified. As judged by sequence similarity and correspondence of predicted N termini with those of purified enzymes, the open reading frames correspond to genes for a second chlorocatechol 1,2-dioxygenase (ClcA2), a second chloromuconate cycloisomerase (ClcB2), a second dienelactone hydrolase (ClcD2), and a muconolactone isomerase-related enzyme (ClcF). All enzymes of this new cluster are only distantly related to the known chlorocatechol enzymes and appear to represent new evolutionary lines of these activities. UV overlay spectra as well as high-pressure liquid chromatography analyses confirmed that 2-chloro-cis,cis-muconate is transformed by ClcB2 to 5-chloromuconolactone, which during turnover by ClcF gives cis-dienelactone as the sole product. cis-Dienelactone was further hydrolyzed by ClcD2 to maleylacetate. ClcF, despite its sequence similarity to muconolactone isomerases, no longer showed muconolactone-isomerizing activity and thus represents an enzyme dedicated to its new function as a 5-chloromuconolactone dehalogenase. Thus, during 3-chlorocatechol degradation by R. opacus 1CP, dechlorination is catalyzed by a muconolactone isomerase-related enzyme rather than by a specialized chloromuconate cycloisomerase.


2002 ◽  
Vol 184 (15) ◽  
pp. 4054-4064 ◽  
Author(s):  
Iris Plumeier ◽  
Danilo Pérez-Pantoja ◽  
Sabina Heim ◽  
Bernardo González ◽  
Dietmar H. Pieper

ABSTRACT The tfdC I D I E I F I, and tfdD II C II E II F II gene modules of plasmid pJP4 of Ralstonia eutropha JMP134 encode complete sets of functional enzymes for the transformation of chlorocatechols into 3-oxoadipate, which are all expressed during growth on 2,4-dichlorophenoxyacetate (2,4-D). However, activity of tfd I-encoded enzymes was usually higher than that of tfd II-encoded enzymes, both in the wild-type strain grown on 2,4-D and in 3-chlorobenzoate-grown derivatives harboring only one tfd gene module. The tfdD II-encoded chloromuconate cycloisomerase exhibited special kinetic properties, with high activity against 3-chloromuconate and poor activity against 2-chloromuconate and unsubstituted muconate, thus explaining the different phenotypic behaviors of R. eutropha strains containing different tfd gene modules. The enzyme catalyzes the formation of an equilibrium between 2-chloromuconate and 5-chloro- and 2-chloromuconolactone and very inefficiently catalyzes dehalogenation to form trans-dienelactone as the major product, thus differing from all (chloro)muconate cycloisomerases described thus far.


2000 ◽  
Vol 66 (4) ◽  
pp. 1602-1608 ◽  
Author(s):  
D. Pérez-Pantoja ◽  
L. Guzmán ◽  
M. Manzano ◽  
D. H. Pieper ◽  
B. González

ABSTRACT The enzymes chlorocatechol-1,2-dioxygenase, chloromuconate cycloisomerase, dienelactone hydrolase, and maleylacetate reductase allow Ralstonia eutropha JMP134(pJP4) to degrade chlorocatechols formed during growth in 2,4-dichlorophenoxyacetate or 3-chlorobenzoate (3-CB). There are two gene modules located in plasmid pJP4,tfdCIDIEIFI (module I) andtfdDIICIIEIIFII (module II), putatively encoding these enzymes. To assess the role of both tfd modules in the degradation of chloroaromatics, each module was cloned into the medium-copy-number plasmid vector pBBR1MCS-2 under the control of the tfdR regulatory gene. These constructs were introduced into R. eutropha JMP222 (a JMP134 derivative lacking pJP4) and Pseudomonas putidaKT2442, two strains able to transform 3-CB into chlorocatechols. Specific activities in cell extracts of chlorocatechol-1,2-dioxygenase (tfdC), chloromuconate cycloisomerase (tfdD), and dienelactone hydrolase (tfdE) were 2 to 50 times higher for microorganisms containing module I compared to those containing module II. In contrast, a significantly (50-fold) higher activity of maleylacetate reductase (tfdF) was observed in cell extracts of microorganisms containing module II compared to module I. The R. eutropha JMP222 derivative containingtfdR-tfdCIDIEIFI grew four times faster in liquid cultures with 3-CB as a sole carbon and energy source than in cultures containingtfdR-tfdDIICIIEIIFII . In the case of P. putida KT2442, only the derivative containing module I was able to grow in liquid cultures of 3-CB. These results indicate that efficient degradation of 3-CB by R. eutropha JMP134(pJP4) requires the two tfd modules such that TfdCDE is likely supplied primarily by module I, while TfdF is likely supplied by module II.


1998 ◽  
Vol 180 (2) ◽  
pp. 400-402 ◽  
Author(s):  
Markus Brückmann ◽  
Rafael Blasco ◽  
Kenneth Nigel Timmis ◽  
Dietmar Helmut Pieper

ABSTRACT Protoanemonin is a toxic metabolite which may be formed during the degradation of some chloroaromatic compounds, such as polychlorinated biphenyls, by natural microbial consortia. We show here that protoanemonin can be transformed by dienelactone hydrolase ofPseudomonas sp. strain B13 tocis-acetylacrylate. Although similarKm values were observed forcis-dienelactone and protoanemonin, the turnover rate of protoanemonin was only 1% that ofcis-dienelactone. This indicates that at least this percentage of the enzyme is in the active state, even in the absence of activation. The trans-dienelactone hydrolase ofPseudomonas sp. strain RW10 did not detectably transform protoanemonin. Obviously, Pseudomonas sp. strain B13 possesses at least two mechanisms to avoid protoanemonin toxicity, namely a highly active chloromuconate cycloisomerase, which routes most of the 3-chloro-cis,cis-muconate to thecis-dienelactone, thereby largely preventing protoanemonin formation, and dienelactone hydrolase, which detoxifies any small amount of protoanemonin that might nevertheless be formed.


1998 ◽  
Vol 180 (5) ◽  
pp. 1082-1094 ◽  
Author(s):  
Dirk Eulberg ◽  
Elena M. Kourbatova ◽  
Ludmila A. Golovleva ◽  
Michael Schlömann

Biochemical investigations of the muconate and chloromuconate cycloisomerases from the chlorophenol-utilizing strainRhodococcus opacus (erythropolis) 1CP had previously indicated that the chlorocatechol catabolic pathway of this strain may have developed independently from the corresponding pathways of proteobacteria. To test this hypothesis, we cloned the chlorocatechol catabolic gene cluster of strain 1CP by using PCR with primers derived from sequences of N termini and peptides of purified chlorocatechol 1,2-dioxygenase and chloromuconate cycloisomerase. Sequencing of the clones revealed that they comprise different parts of the same gene cluster in which five open reading frames have been identified. The clcB gene for chloromuconate cycloisomerase is transcribed divergently from a gene which codes for a LysR-type regulatory protein, the presumed ClcR. Downstream of clcRbut separated from it by 222 bp, we detected the clcA andclcD genes, which could unambiguously be assigned to chlorocatechol 1,2-dioxygenase and dienelactone hydrolase. A gene coding for a maleylacetate reductase could not be detected. Instead, the product encoded by the fifth open reading frame turned out to be homologous to transposition-related proteins of IS1031 and Tn4811. Sequence comparisons of ClcA and ClcB to other 1,2-dioxygenases and cycloisomerases, respectively, clearly showed that the chlorocatechol catabolic enzymes of R. opacus 1CP represent different branches in the dendrograms than their proteobacterial counterparts. Thus, while the sequences diverged, the functional adaptation to efficient chlorocatechol metabolization occurred independently in proteobacteria and gram-positive bacteria, that is, by functionally convergent evolution.


Sign in / Sign up

Export Citation Format

Share Document