gene module
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 54)

H-INDEX

17
(FIVE YEARS 4)

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Quang-Huy Nguyen ◽  
Duc-Hau Le

Abstract Background When it comes to the co-expressed gene module detection, its typical challenges consist of overlap between identified modules and local co-expression in a subset of biological samples. The nature of module detection is the use of unsupervised clustering approaches and algorithms. Those methods are advanced undoubtedly, but the selection of a certain clustering method for sample- and gene-clustering tasks is separate, in which the latter task is often more complicated. Results This study presented an R-package, Overlapping CoExpressed gene Module (oCEM), armed with the decomposition methods to solve the challenges above. We also developed a novel auxiliary statistical approach to select the optimal number of principal components using a permutation procedure. We showed that oCEM outperformed state-of-the-art techniques in the ability to detect biologically relevant modules additionally. Conclusions oCEM helped non-technical users easily perform complicated statistical analyses and then gain robust results. oCEM and its applications, along with example data, were freely provided at https://github.com/huynguyen250896/oCEM.


2021 ◽  
Author(s):  
Alos B Diallo ◽  
Cecilia B Cavazzoni ◽  
Jiaoyuan Elisabeth Sun ◽  
Peter T Sage

Motivation T follicular regulatory (Tfr) cells are a specialized cell subset that controls humoral immunity. Despite a number of individual transcriptomic studies on these cells, core functional pathways have been difficult to uncover due to the substantial transcriptional overlap of these cells with other effector cell types, as well as transcriptional changes occurring due to disease settings. Developing a core transcriptional module for Tfr cells that integrates multiple cell type comparisons as well as diverse disease settings will allow a more accurate prediction of functional pathways. Researchers studying allergic reactions, immune responses to vaccines, autoimmunity and cancer could use this gene set to better understand the roles of Tfr cells in controlling disease progression. Additional cell types beyond Tfr cells that have similar features of transcriptomic complexity within diverse disease settings may also be studied using similar approaches. High-throughput sequencing technologies allow the generation of large datasets that require specific tools to best interpret the data. The development of a core transcriptional module for Tfr cells will allow investigators to determine if Tfr cells may have functional roles within their biological systems with little knowledge of Tfr biology. With this work, we have addressed the need of core gene modules to define specific subsets of immune cells. Results We introduce an integrated "core Tfr cell gene module" that can be incorporated into GSEA analysis using various input sizes. The integrated core Tfr gene module was built using transcriptomic studies in Tfr cells from several different tissues, disease settings, and cell type comparisons. Random forest was used to integrate the transcriptomic studies to generate the core gene module. A GSEA gene set was formulated from the integrated core Tfr gene module for incorporation into end-user friendly GSEA. The gene sets are presented along with random genes taken from the GTEX data set and are presented as GMT files. The user can upload the gene set to the GSEA website or any gene set tool which takes GMT files. We also present the full results of the model including p-values calculated by random forest. This allows the user to choose a p-value cutoff that is most appropriate for the experimental setting.


2021 ◽  
Author(s):  
Hyo-Jun Lee ◽  
Yoonji Chung ◽  
Ki Yong Chung ◽  
Young-Kuk Kim ◽  
Jun Heon Lee ◽  
...  

Abstract In the general framework of the weighted gene co-expression network analysis (WGCNA), a hierarchical clustering algorithm is commonly used to module definition. However, hierarchical clustering depends strongly on the topological overlap measure. In other words, this algorithm may assign two genes with low topological overlap to different modules even though their expression patterns are similar. Here, a novel gene module clustering algorithm for WGCNA is proposed. We develop a gene module clustering network (gmcNet), which simultaneously addresses single-level expression and topological overlap measure. The proposed gmcNet includes a “co-expression pattern recognizer" (CEPR) and “module classifier". The CEPR incorporates expression features of single genes into the topological features of co-expressed ones. Given this CEPR-embedded feature, the module classifier computes module assignment probabilities. We validated gmcNet performance using 4,976 genes from 20 native Korean cattle. We observed that the CEPR generates more robust features than single-level expression or topological overlap measure. Given the CEPR-embedded feature, gmcNet achieved the best performance in terms of modularity (0.261) and the differentially expressed signal (27.739) compared with other clustering methods tested. Furthermore, gmcNet detected some interesting biological functionalities for carcass weight, backfat thickness, intramuscular fat, and beef tenderness of Korean native cattle. Therefore, gmcNet is a useful framework for WGCNA module clustering.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1888
Author(s):  
Xinyang Li ◽  
Lu Dong ◽  
Huaning Yu ◽  
Yan Zhang ◽  
Shuo Wang

Heterocyclic amines (HCAs) are a set of food contaminants that may exert a cytotoxic effect on human peripheral blood mononuclear cells (PBMC). However, the genetic mechanism underlying the cytotoxicity of HCAs on PBMC has not been investigated. In the study, bioinformatic analysis on gene dataset GSE19078 was performed. The results of weighted correlation network analysis and linear models for microarray and RNA-seq data analysis showed that four gene modules were relevant to 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) exposure while one gene module was correlated with 2-amino-3-methyl-3H-imidazo[4,5f]quinoline (IQ) exposure. Gene functional analysis showed that the five modules were annotated mainly with mRNA transcriptional regulation, mitochondrial function, RNA catabolic process, protein targeting, and immune function. Five genes, MIER1, NDUFA4, MLL3, CD53 and CSF3 were recognized as the feature genes for each hub gene network of the corresponding gene module, and the expression of feature genes was observed with a significant difference between the PhIP/IQ samples and the other samples. Our results provide novel genes and promising mechanisms for exploration on the genetic mechanism of HCAs on PBMC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Sitong Zhou ◽  
Yuanyuan Han ◽  
Jiehua Li ◽  
Xiaobing Pi ◽  
Jin Lyu ◽  
...  

Skin cutaneous melanoma (SKCM) is the most aggressive and fatal type of skin cancer. Its highly heterogeneous features make personalized treatments difficult, so there is an urgent need to identify markers for early diagnosis and therapy. Detailed profiles are useful for assessing malignancy potential and treatment in various cancers. In this study, we constructed a co-expression module using expression data for cutaneous melanoma. A weighted gene co-expression network analysis was used to discover a co-expression gene module for the pathogenesis of this disease, followed by a comprehensive bioinformatics analysis of selected hub genes. A connectivity map (CMap) was used to predict drugs for the treatment of SKCM based on hub genes, and immunohistochemical (IHC) staining was performed to validate the protein levels. After discovering a co-expression gene module for the pathogenesis of this disease, we combined GWAS validation and DEG analysis to identify 10 hub genes in the most relevant module. Survival curves indicated that eight hub genes were significantly and negatively associated with overall survival. A total of eight hub genes were positively correlated with SKCM tumor purity, and 10 hub genes were negatively correlated with the infiltration level of CD4+ T cells and B cells. Methylation levels of seven hub genes in stage 2 SKCM were significantly lower than those in stage 3. We also analyzed the isomer expression levels of 10 hub genes to explore the therapeutic target value of 10 hub genes in terms of alternative splicing (AS). All 10 hub genes had mutations in skin tissue. Furthermore, CMap analysis identified cefamandole, ursolic acid, podophyllotoxin, and Gly-His-Lys as four targeted therapy drugs that may be effective treatments for SKCM. Finally, IHC staining results showed that all 10 molecules were highly expressed in melanoma specimens compared to normal samples. These findings provide new insights into SKCM pathogenesis based on multi-omics profiles of key prognostic biomarkers and drug targets. GPR143 and SLC45A2 may serve as drug targets for immunotherapy and prognostic biomarkers for SKCM. This study identified four drugs with significant potential in treating SKCM patients.


2021 ◽  
Author(s):  
Hyo-Jun Lee ◽  
Yoonji Chung ◽  
Ki Yong Chung ◽  
Young-Kuk Kim ◽  
Jun Heon Lee ◽  
...  

AbstractIn the general framework of the weighted gene co-expression network analysis (WGCNA), a hierarchical clustering algorithm is commonly used to module definition. However, hierarchical clustering depends strongly on the topological overlap measure. In other words, this algorithm may assign two genes with low topological overlap to different modules even though their expression patterns are similar. Here, a novel gene module clustering algorithm for WGCNA is proposed. We develop a gene module clustering network (gmcNet), which simultaneously addresses single-level expression and topological overlap measure. The proposed gmcNet includes a “co-expression pattern recognizer” (CEPR) and “module classifier”. The CEPR incorporates expression features of single genes into the topological features of co-expressed ones. Given this CEPR-embedded feature, the module classifier computes module assignment probabilities. We validated gmcNet performance using 4,976 genes from 20 native Korean cattle. We observed that the CEPR generates more robust features than single-level expression or topological overlap measure. Given the CEPR-embedded feature, gmcNet achieved the best performance in terms of modularity (0.261) and the differentially expressed signal (27.739) compared with other clustering methods tested. Furthermore, gmcNet detected some interesting biological functionalities for carcass weight, backfat thickness, intramuscular fat, and beef tenderness of Korean native cattle. Therefore, gmcNet is a useful framework for WGCNA module clustering.Author summaryA graph neural network is a good alternative algorithm for WGCNA module clustering. Even though the graph-based learning methods have been widely applied in bioinformatics, most studies on WGCNA did not use graph neural network for module clustering. In addition, existing methods depend on topological overlap measure of gene pairs. This can degrade similarity of expression not only between modules, but also within module. On the other hand, the proposed gmcNet, which works similar to message-passing operation of graph neural network, simultaneously addresses single-level expression and topological overlap measure. We observed the higher performance of gmcNet comparing to existing methods for WGCNA module clustering. To adopt gmcNet as clustering algorithm of WGCNA, it remains future research issues to add noise filtering and optimal k search on gmcNet. This further research will extend our proposed method to be a useful module clustering algorithm in WGCNA. Furthermore, our findings will be of interest to computational biologists since the studies using graph neural networks to WGCNA are still rare.


2021 ◽  
Vol 170 ◽  
pp. 113758
Author(s):  
Chengxi Jiang ◽  
Xuan Fei ◽  
Xiaojun Pan ◽  
Huilian Huang ◽  
Yu Qi ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Hui Li ◽  
Linyan Chen ◽  
Hao Zeng ◽  
Qimeng Liao ◽  
Jianrui Ji ◽  
...  

BackgroundColon adenocarcinoma (COAD) is one of the most common malignant tumors in the world. The histopathological features are crucial for the diagnosis, prognosis, and therapy of COAD.MethodsWe downloaded 719 whole-slide histopathological images from TCIA, and 459 corresponding HTSeq-counts mRNA expression and clinical data were obtained from TCGA. Histopathological image features were extracted by CellProfiler. Prognostic image features were selected by the least absolute shrinkage and selection operator (LASSO) and support vector machine (SVM) algorithms. The co-expression gene module correlated with prognostic image features was identified by weighted gene co-expression network analysis (WGCNA). Random forest was employed to construct an integrative prognostic model and calculate the histopathological-genomic prognosis factor (HGPF).ResultsThere were five prognostic image features and one co-expression gene module involved in the model construction. The time-dependent receiver operating curve showed that the prognostic model had a significant prognostic value. Patients were divided into high-risk group and low-risk group based on the HGPF. Kaplan-Meier analysis indicated that the overall survival of the low-risk group was significantly better than the high-risk group.ConclusionsThese results suggested that the histopathological image features had a certain ability to predict the survival of COAD patients. The integrative prognostic model based on the histopathological images and genomic features could further improve the prognosis prediction in COAD, which may assist the clinical decision in the future.


2021 ◽  
Vol 2021 ◽  
pp. 1-29
Author(s):  
Xiao-yang Chen ◽  
Hong-fei Han ◽  
Zhen-yan He ◽  
Xue-gong Xu

Astragalus membranaceus has complex components as a natural drug and has multilevel, multitarget, and multichannel effects on dilated cardiomyopathy (DCM). However, the immune mechanism, gene module, and molecular subtype of astragalus membranaceus in the treatment of DCM are still not revealed. Microarray information of GSE84796 was downloaded from the GEO database, including RNA sequencing data of seven normal cardiac tissues and ten DCM cardiac tissues. A total of 4029 DCM differentially expressed genes were obtained, including 1855 upregulated genes and 2174 downregulated genes. GO/KEGG/GSEA analysis suggested that the activation of T cells and B cells was the primary cause of DCM. WGCNA was used to obtain blue module genes. The blue module genes are primarily ADCY7, BANK1, CD1E, CD19, CD38, CD300LF, CLEC4E, FLT3, GPR18, HCAR3, IRF4, LAMP3, MRC1, SYK, and TLR8, which successfully divided DCM into three molecular subtypes. Based on the CIBERSORT algorithm, the immune infiltration profile of DCM was analyzed. Many immune cell subtypes, including the abovementioned immune cells, showed different levels of increased infiltration in the myocardial tissue of DCM. However, this infiltration pattern was not obviously correlated with clinical characteristics, such as age, EF, and sex. Based on network pharmacology and ClueGO, 20 active components of Astragalus membranaceus and 40 components of DMCTGS were obtained from TCMSP. Through analysis of the immune regulatory network, we found that Astragalus membranaceus effectively regulates the activation of immune cells, such as B cells and T cells, cytokine secretion, and other processes and can intervene in DCM at multiple components, targets, and levels. The above mechanisms were verified by molecular docking results, which confirmed that AKT1, VEGFA, MMP9, and RELA are promising potential targets of DCM.


2021 ◽  
pp. mcs.a006102
Author(s):  
Kuniaki Sato ◽  
Kazuo Nishiyama ◽  
Kenichi Taguchi ◽  
Rina Jiromaru ◽  
Hidetaka Yamamoto ◽  
...  

Human papillomavirus (HPV)-related oropharyngeal small cell carcinoma (OPSmCC) is a rare malignancy with aggressive behavior, whereas HPV-related oropharyngeal squamous cell carcinoma (OPSqCC) displays a favorable prognosis. Notably, these two malignancies occasionally arise in an identical tumor. In this case study, we explored the molecular characteristics that distinguishes these two carcinomas employing a rare case of HPV-related oropharyngeal carcinoma (OPC) with the combined histology of SmCC and SqCC. Immunohistochemical analysis and HPV-RNA in situ hybridization (ISH) suggested that both SmCC and SqCC were HPV-related malignancies. Targeted exome sequencing revealed that SmCC and SqCC had no significant difference in mutations of known driver genes. In contrast, RNA sequencing followed by bioinformatic analyses suggested that aberrant transcriptional programs may be responsible for the neuroendocrine differentiation of HPV-related OPC. Compared to SqCC, genes upregulated in SmCC were functionally enriched in inflammatory and immune responses (e.g., arachidonic acid metabolism). We then developed a SmCC-like gene module (top 10 upregulated genes) and found that OPC patients with high module activity showed poor prognosis in The Cancer Genome Atlas (TCGA) and GSE65858 cohort. Gene set enrichment analysis of the SmCC-like gene module suggested its link to MYC proto-oncogene in the TCGA dataset. Taken together, these findings suggest that the SmCC-like gene module may contribute to acquisition of aggressive phenotypes and tumor heterogeneity of HPV-related OPC. The present case study is the first report of genetic and transcriptomic aberrations in HPV-related OPSmCC combined with SqCC.


Sign in / Sign up

Export Citation Format

Share Document