scholarly journals Simulation research of the strength of an engine mount in an aircraft piston diesel engine

2021 ◽  
Vol 2130 (1) ◽  
pp. 012017
Author(s):  
P Magryta ◽  
K Pietrykowski

Abstract The article presents strength simulations of a mount for mounting the test engine. Mounted on a stationary test stand, this mount consists of external fixings, fixings to stabilize the engine and tubular elements as a truss. These tubular elements are pipes made of seamless black steel. The material of the truss is S235JR steel. The article examines three different versions of the mount: mount no. 1 - initial mount, mount no. 2 - mount after a modification of pipe arrangement, mount no. 3 - mount after a modification of pipe wall thickness. For each version of the mount and subsequent calculation steps, the same boundary conditions and results legend were assumed. All calculations were made in Catia v5 in the Generative Structure Analysis module. To reflect the conditions prevailing during the engine operation on the test bench, the following conditions as mount load were adopted: gravity from the engine mass as 1000 N; engine thrust as 5000 N, and engine torque as 227 Nm. First, the model was pre-calculated to check the influence of mesh size on the obtained results. 2 mm parabolic tetrahedral elements were used in a computational grid. All subsequent steps of the mount modification showed a positive effect of reducing the maximum stress values or their mitigation as dispersion over a larger area. The changes made it possible to eliminate potentially dangerous areas of stress accumulation points. The material used has a strength several times greater than the stresses occurring in the tested elements. It was found that no further modifications to the mount are required and it is possible to use the created geometry on the test stand.

2020 ◽  
Vol 181 (2) ◽  
pp. 46-52
Author(s):  
Filip SZWAJCA ◽  
Krzysztof WISŁOCKI

Gas engines are a viable source of propulsion due to the ecological indicators of gas fuels and the large amount of the needed natural resources. Combustion of lean homogeneous gas mixtures allows achieving higher thermal efficiency values, which is a key factor in current engine development trends. Using the spark-jet ignition system (also called as Turbulent Jet Ignition or Two-stage combustion) significantly improves the efficiency and stability of the combustion process, especially in the part-load operation on lean or very lean mixtures. This paper presents the impact of using two different fuel injection methods: Port Fuel Injection or Mixer on the operation stability of a gas engine designed for LDVs. Comparative studies of two different mixture preparation systems were carried out on a single-cylinder AVL 5804 test engine. By re-cording the cylinder pressure for a significant number of engine cycles, it became possible to determine the repeatability of engine operation and to correlate the results with the mixture formation system and the air-fuel ratio. In the performed research the beneficial effect of the mixer system application on the engine operation stability in the part-load conditions was found.


2019 ◽  
Vol 252 ◽  
pp. 05007 ◽  
Author(s):  
Łukasz Grabowski ◽  
Ksenia Siadkowska ◽  
Krzysztof Skiba

This paper reports the results of simulation works of Rotax 912 aircraft piston engine, which is a basic unit in most ultra-light aircrafts. The method for preparing the model aircraft engine operation process was presented. Simulation tests were carried out in the AVL Boost programme. The programme allows a full use of zero-dimensional and one-dimensional modelling. It also allows a comparison of other engine models. The developed model has enabled us to simulate the flow of air through the inlet pipes, carburettors, valves and combustion process. The preparation of the model required us to enter parameters that are not available in the manufacturer's catalogue, therefore, necessary measurements and analysis of the engine parts were carried out on a laboratory bench. The calculations in the AVL Boost programme were carried out in the conditions determined for the selected BMEP values with the objective of characterising the engine performance by determining its power, torque and fuel consumption.


2005 ◽  
Vol 19 (07n09) ◽  
pp. 1675-1681 ◽  
Author(s):  
H. J. SONG ◽  
S. B. CHOI ◽  
K. S. KIM

A key function of engine mount of vehicle systems is to support engine mass and isolate noise and vibration from engine disturbance forces. One of attractive candidates to achieve this goal is to utilize a semi-active ER engine mount. By applying this, we can effectively control damping force and hence the noise and vibration by just controlling the intensity of electric field. However, control performance of the engine mount may be very sensitive to temperature variation during engine operation. In this work, we investigate dynamic and control performances of ER engine mount with respect to the temperature variation. In order to undertake this, a flow-mode type of ER engine mount is designed and manufactured. Displacement transmissibility is experimentally evaluated for 1 degree of freedom. The ER engine mount is then incorporated with full-vehicle model in order to investigate vibration control performance. After formulating the governing equation of motion, a semi-active controller is designed. The controller is implemented through a hardware-in-the-loop simulation (HILS), and control responses such as acceleration level at various engine speeds are evaluated in the frequency and time domains.


Author(s):  
G. Papalambrou ◽  
N. P. Kyrtatos

This paper addresses the reduction of smoke emissions and improvement of load acceptance in a turbocharged marine diesel engine, during transient operation involving rapid load increases. Model Predictive Control (MPC) provided the optimal quantity of injected air in the engine while minimizing smoke density (opacity), with constraint not to exceed a limit in intake manifold pressure, in order to avoid surge in the compressor. System identification methods were used to determine control models at various operating points of the engine. Transient response experiments were performed on a full-scale marine diesel test engine on a transient test bed, using real-time MPC configuration. Results comparing the opacity under air injection model predictive control with the standard engine operation without air injection, during the same transient, show reduction in opacity level while avoiding surge.


Author(s):  
Christopher Cooney ◽  
Thomas Wallner ◽  
Steve McConnell ◽  
Jeffrey C. Gillen ◽  
Clint Abell ◽  
...  

The new U.S. Renewable Fuel Standard requires an increase of ethanol and advanced biofuels to 36 billion gallons by 2022. Due to its high octane number, renewable character and minimal toxicity, ethanol was believed to be one of the most favorable alternative fuels to displace gasoline in spark-ignited engines. However, ethanol fuel results in a substantial reduction in vehicle range when compared to gasoline. In addition, ethanol is fully miscible in water which requires blending at distribution sites instead of the refinery. Butanol, on the other hand, has an energy density comparable to gasoline and lower affinity for water than ethanol. Butanol has recently received increased attention due to its favorable fuel properties as well as new developments in production processes. The advantageous properties of butanol warrant a more in-depth study on the potential for butanol to become a significant component of the advanced biofuels mandate. This study evaluates the combustion behavior, performance, as well as the regulated engine-out emissions of ethanol and butanol blends with gasoline. Two of the butanol isomers; 1-butanol as well as iso-butanol, were tested as part of this study. The evaluation includes gasoline as a baseline, as well as various ethanol/gasoline and butanol/gasoline blends up to a volume blend ratio of 85% of the oxygenated fuel. The test engine is a spark ignition, direct-injection, (SIDI), four-cylinder test engine equipped with pressure transducers in each cylinder. These tests were designed to evaluate a scenario in terms of using these alcohol blends in an engine calibrated for pump gasoline operation. Therefore no modifications to the engine calibration were performed. Following this analysis of combustion behavior and emissions with the base engine calibration, future studies will include detailed heat release analysis of engine operation without exhaust gas recirculation. Also, knock behavior of the different fuel blends will be studied along with unregulated engine out emissions.


2017 ◽  
Vol 43 (1) ◽  
pp. 249-276
Author(s):  
Paweł Szczepaniak ◽  
Michał Jóźko

Abstract The test stand for investigations of flow characteristics of pneumatic distributor has been presented in this paper. This test stand has been composed as requirements include in standard PN-92/M-73763. The results of experimental and simulation investigations for standard five ways and two position pneumatic distributor have been presented. In simulations have been used CFD of SolidWorks Flow Simulation application. Flow characteristic of pneumatic distributor is necessary for design process of special pneumatic circuits of UAV launchers. CFD methods allow specify flow characteristics. Simulation research allow effective pneumatic components modification, whose used of special pneumatic circuits of UAV launchers. Results of experimental and simulation investigations were analyzed and compared.


Recycling ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 13
Author(s):  
Hoi Nguyen Xa ◽  
Thanh Nguyen Viet ◽  
Khanh Nguyen Duc ◽  
Vinh Nguyen Duy

In this study, waste cooking oil (WCO) was used to successfully manufacture catalyst cracking biodiesel in the laboratory. This study aims to evaluate and compare the influence of waste cooking oil synthetic diesel (WCOSD) with that of commercial diesel (CD) fuel on an engine’s operating characteristics. The second goal of this study is to compare the engine performance and temperature characteristics of cooling water and lubricant oil under various engine operating conditions of a test engine fueled by waste cooking oil and CD. The results indicated that the engine torque of the engine running with WCOSD dropped from 1.9 Nm to 5.4 Nm at all speeds, and its brake specific fuel consumption (BSFC) dropped at almost every speed. Thus, the thermal brake efficiency (BTE) of the engine fueled by WCOSD was higher at all engine speeds. Also, the engine torque of the WCOSD-fueled engine was lower than the engine torque of the CD-fueled engine at all engine speeds. The engine’s power dropped sequentially through 0.3 kW, 0.4 kW, 0.6 kW, 0.9 kW, 0.8 kW, 0.9 kW, 1.0 kW and 1.9 kW.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3282
Author(s):  
Alberth Renne Gonzalez Caranton ◽  
Vladimir Silva Leal ◽  
Camilo Bayona-Roa ◽  
Manuel Alejandro Mayorga Betancourt ◽  
Carolina Betancourt ◽  
...  

Biofuels are important additives to conventional fuels in combustion engines of the transport sector, as they reduce atmospheric emissions and promote environmental-friendly production chains. The mechanical and thermal performance of a PT6A-61A engine on a test bench of the Colombian Air Force operating with blends of JETA-1 and Biodiesel up to 25% volume values of substitution is evaluated in this work. Experimental results show that blends are operationally reliable up to 15% volume content. In that range, the engine operation is not compromised in terms of response variables. Moreover, experimental properties of fuel blends show that the freezing point—which is the most critical variable, does not comply with aeronautical regulations. The system dynamics are subject to several variations in the test parameters, which mainly affected fuel flow, Inter-Turbine Temperature (ITT), and engine performance. A Principal Component Analysis (PCA) is performed over the experimental results to quantify possible disturbances on the bench measurements. This is based on the fact that the study is restrained to stationary test bench conditions.


1997 ◽  
Vol 119 (1) ◽  
pp. 218-226 ◽  
Author(s):  
J. F. Larsen ◽  
J. S. Wallace

An experiment was conducted to evaluate the potential for reduced exhaust emissions and improved efficiency, by way of lean-burn engine fuelling with hydrogen supplemented natural gas (Hythane). The emissions and efficiency of the Hythane fuel (15 percent hydrogen, 85 percent natural gas by volume), were compared to the emissions and efficiency of pure natural gas using a turbocharged, spark ignition, 3.1 L, V-6 engine. The feasibility of heavy duty engine fueling with Hythane was assessed through testing conducted at engine speed and load combinations typical of heavy-duty engine operation. Comparison of the efficiency and emissions at MBT spark timing revealed that Hythane fueling of the test engine resulted in consistently lower brake specific energy consumption and emissions of total hydrocarbons (THC), carbon monoxide (CO), and carbon dioxide (CO2), at a given equivalence ratio. There was no clear trend with respect to MBT oxides of nitrogen (NOx) emissions. It was also discovered that an improved NOx-THC tradeoff resulted when Hythane was used to fuel the test engine. Consequently, Hythane engine operating parameters can be adjusted to achieve a concurrent reduction in NOx and THC emissions relative to natural gas fueling.


2009 ◽  
Vol 139 (4) ◽  
pp. 3-11
Author(s):  
Jarosław MAMALA

The paper presents the analysis of improvement of spark ignition engine operation indexes by means of short-time supercharging. The simulation and engine test stand investigation results of the air flow in the spark ignition combustion engine intake system have been shown here.


Sign in / Sign up

Export Citation Format

Share Document