scholarly journals FxLMS Algorithm for Active Vibration Control of Structure By Using Inertial Damper with Displacement Constraint

Author(s):  
Min Sig Kang

Engine is the main source of vibration that generates unwanted noise and vibration of vehicle chassis. Especially, in submarine applications, radiation of noise signatures can be detected at some distance away from the submarine using a sonar array. Thus quiet operation is crucial for submarine’s survivability. This study addresses reduction of the force transmissibility originating from engines and transmitted to hull through engine mounts. An inertial damper, as an actuator of hybrid mount system, is addressed to reduce even further the level of vibration. Narrow band FxLMS algorithms are broadly used to cancel the vibration of engine mount because of its excellent performance of canceling narrow band noise. However, in real active dampers, the maximum displacement of damper mass is kinematically restricted. When the control input signal from the FxLMS algorithm exceeds this limitation, the damper mass will collide with the mechanical stops and results in many problems. Originated from these, a modified narrow band FxLMS algorithm based on the equalizer technique with the maximum allowable displacement of active damper mass is proposed in this study. Some simulation results showed that the propose algorithm is effective to suppress vibration of engine mount while ensuring given displacement constraint.

Author(s):  
V. Fakhari ◽  
H. A. Talebi ◽  
A. R. Ohadi

In this study, the effectiveness of an active engine mount in vibration suppression of a four-cylinder V-shaped engine is evaluated. In this regard, a 6 degree of freedom engine model under inertia and balancing mass forces and torques is considered. At first, the governing equations of motion of engine supported by three rubber mounts are presented. Subsequently, one of the rubber mounts is replaced by an active mount and the effectiveness of active mount, in the presence of sensor noise, in vibration isolation of the engine is investigated. Two robust control algorithms, namely H2 and H∞ schemes are employed to provide control input using feedback from accelerations of the engine body in the position of the mounts. Moreover, unstructured uncertainties due to the unmodeled dynamic of the plant, actuator and sensors are considered. Simulation results show that the active mount is more effective than the rubber mount in vibration suppression of the engine.


2018 ◽  
Vol 41 (9) ◽  
pp. 2496-2506
Author(s):  
Pu Yuxue ◽  
Meng Zeng ◽  
Zhou Huanlin

Adaptive active vibration control (AAVC) is an effective way for reducing structure vibration at low frequency. AAVC methodology is preferred in AVC system due to its self-adjustment ability to adapt to varying dynamics of the structure. The Filtered-X Least Mean Square (FXLMS) algorithm is widely implemented in active control applications. Accurate secondary path models are very crucial for the implementation in multichannel AAVC system based on FXLMS algorithm. The auxiliary random noise technique is often applied to achieve secondary path modeling (SPM) during online operation. This paper proposes a new multichannel AAVC methodology based on online SPM method. The online SPM error is estimated indirectly to reduce the interaction between the AAVC controller and the online SPM filter. A new variable step-size (VSS) strategy for online SPM filter is proposed based on the estimated online SPM error. A simple but effective auxiliary noise power scheduling (ANPS) method is proposed to eliminate the contribution of the auxiliary noise on the residual vibration. A series of multi-channel AAVC experiments on a cantilever epoxy resin plate with PZT sensors and actuators are presented to demonstrate the performance of the proposed methodology. Experiment results indicate that the proposed method provides very good online SPM accuracy, and the vibration of the smart cantilever plate has been effectively attenuated with high convergence rate.


2017 ◽  
Vol 28 (18) ◽  
pp. 2603-2616 ◽  
Author(s):  
Asif Khan ◽  
Hyun Sung Lee ◽  
Heung Soo Kim

In this article, the effect of a sensor-debonding failure on the active vibration control of a smart composite plate is investigated numerically. A mathematical model of the smart structure with a partially debonded piezoelectric sensor is developed using an improved layerwise theory, a higher-order electric-potential field that serves as the displacement field, and the potential variation through the piezoelectric patches. A state-space form that is based on the reduced-order model is employed for the controller design. A control strategy with a constant gain and velocity feedback is used to assess the vibration-control characteristics of the controller in the presence of the sensor-debonding failure. The obtained results show that sensor-debonding failure reduces the sensor-output, control-input signal, and active damping in magnitude that successively degrades the vibration attenuation capability of the active vibration controller. The settling time and relative tip displacement of the controlled structure increase with the increasing length of partial debonding between the piezoelectric sensor and host structure. Furthermore, a damage-sensitive feature along with multidimensional scaling showed excellent results for the detection and quantification of sensor-debonding failure in the active vibration control of smart structures.


2011 ◽  
Vol 52-54 ◽  
pp. 358-364
Author(s):  
Jong Seok Oh ◽  
Seung Bok Choi

In this paper, vibration control performance of piezostack active engine mount system for unmanned aero vehicle (UAV) is evaluated via computer simulation. As a first step, the dynamic model of engine mount system which is supported at three points is derived. In the configuration of engine mount system, the inertia type of piezostack based active mount is installed for active vibration control. Then, the vibration level of UAV engine is measured. To attenuate the vibration which is transmitted from engine, a sliding mode controller which is robust to uncertain parameters is designed. Vibration control performances of active engine mount system are evaluated at each mount and center of gravity. Effective Control results are presented in both time and frequency domains.


2019 ◽  
Vol 224 ◽  
pp. 05010
Author(s):  
Yi Ye ◽  
Miaoxian Guo

In this paper, an active vibration control platform is developed for milling processes. In this system, the workpiece is driven by a specially designed active platform to control the relative vibration between the tool and workpiece during milling processes. Numerical simulations are carried out to validate the effectiveness of the control platform. Results indicate that maximum stress of the hinge mechanism of the platform is far less than the yield limit of the material, and the designed platform can meet the use requirements in terms of the maximum displacement and natural frequency.


Author(s):  
S. V. Kravchenko

Abstract The features of active vibration control applied to self-excited non-conservative mechanical systems (such as structures subject to flatter, rotor machines, tubes conveying fluid) are discussed. It has been found that the optimal control strategy is the broad-band compensation of the dynamic force reactions combined with narrow-band damping of the mechanical structure resonant vibration. Some problems of feedback synthesis are solved analytically for these systems. The importance of symmetry and asymmetry for the active vibration control systems is discussed. In the case of self-excited systems, it is possible to use the small asymmetry of the control system for the stabilization of the dynamic process.


2016 ◽  
Vol 24 (3) ◽  
pp. 505-526 ◽  
Author(s):  
M Yaqoob Yasin ◽  
Santosh Kapuria

In this work, we study the effect of piezoelectric nonlinearity on shape and active vibration control of smart piezolaminated composite and sandwich shallow shells under strong field actuation. An efficient finite element model with advanced laminate kinematics and full electromechanical coupling is developed for this purpose. The nonlinearity is modeled using a rotationally invariant quadratic constitutive relationship for the piezoelectric material. For the laminate kinematics, a recently developed efficient layerwise theory, which is computationally as efficient as an equivalent single-layer theory, and has been shown to yield very accurate results in comparison with three-dimensional piezoelasticity based solutions for linear electromechanical response of hybrid laminated shells, has been employed. The nonlinear static response for shape control is obtained using the direct iteration method, and the active vibration control response with linear quadratic Gaussian controller is obtained by using the feedback linearization approach through control input transformation. It is shown that the linear model significantly overestimates the voltage required for shape or vibration control, when the applied electric field is beyond the threshold limit of the actuator. Thus, the use of the nonlinear model is essential for designing the control system utilizing the full actuation authority of the actuators. The effects of actuator thickness, radius of curvature to span ratio and applied loading on the relative difference between linear and nonlinear predictions are illustrated for shape and vibration control of smart cylindrical and spherical shells.


Sign in / Sign up

Export Citation Format

Share Document