hydrophilic residue
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

2020 ◽  
Vol 6 (50) ◽  
pp. eabe0751 ◽  
Author(s):  
Michael Dominic Sacco ◽  
Chunlong Ma ◽  
Panagiotis Lagarias ◽  
Ang Gao ◽  
Julia Alma Townsend ◽  
...  

The main protease (Mpro) of SARS-CoV-2 is a key antiviral drug target. While most Mpro inhibitors have a γ-lactam glutamine surrogate at the P1 position, we recently found that several Mpro inhibitors have hydrophobic moieties at the P1 site, including calpain inhibitors II and XII, which are also active against human cathepsin L, a host protease that is important for viral entry. In this study, we solved x-ray crystal structures of Mpro in complex with calpain inhibitors II and XII and three analogs of GC-376. The structure of Mpro with calpain inhibitor II confirmed that the S1 pocket can accommodate a hydrophobic methionine side chain, challenging the idea that a hydrophilic residue is necessary at this position. The structure of calpain inhibitor XII revealed an unexpected, inverted binding pose. Together, the biochemical, computational, structural, and cellular data presented herein provide new directions for the development of dual inhibitors as SARS-CoV-2 antivirals.



2019 ◽  
Vol 21 (19) ◽  
pp. 9683-9693 ◽  
Author(s):  
Hiroshi Nishigami ◽  
Jiyoung Kang ◽  
Ryu-ichiro Terada ◽  
Hiori Kino ◽  
Kazuhiko Yamasaki ◽  
...  

Hybrid electrostatic/hydrophobic contacts constitute metastable “hydrophobic” packing of an intrinsic disordered peptide (IDP) composed of “hydrophilic” residue clusters.



2016 ◽  
Vol 13 (3) ◽  
pp. 518-527 ◽  
Author(s):  
Guoying Ni ◽  
Yuejian Wang ◽  
Scott Cummins ◽  
Shelley Walton ◽  
Kate Mounsey ◽  
...  


PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0156618 ◽  
Author(s):  
Moawiah M. Naffaa ◽  
Nathan Absalom ◽  
V. Raja Solomon ◽  
Mary Chebib ◽  
David E. Hibbs ◽  
...  


Microbiology ◽  
2011 ◽  
Vol 157 (8) ◽  
pp. 2422-2432 ◽  
Author(s):  
Takashi Terauchi ◽  
Hiroyuki Terashima ◽  
Seiji Kojima ◽  
Michio Homma

Bacterial flagellar motors exploit the electrochemical potential gradient of a coupling ion (H+ or Na+) as their energy source, and are composed of stator and rotor proteins. Sodium-driven and proton-driven motors have the stator proteins PomA and PomB or MotA and MotB, respectively, which interact with each other in their transmembrane (TM) regions to form an ion channel. The single TM region of PomB or MotB, which forms the ion-conduction pathway together with TM3 and TM4 of PomA or MotA, respectively, has a highly conserved aspartate residue that is the ion binding site and is essential for rotation. To investigate the ion conductivity and selectivity of the Na+-driven PomA/PomB stator complex, we replaced conserved residues predicted to be near the conserved aspartate with H+-type residues, PomA-N194Y, PomB-F22Y and/or PomB-S27T. Motility analysis revealed that the ion specificity was not changed by either of the PomB mutations. PomB-F22Y required a higher concentration of Na+ to exhibit swimming, but this effect was suppressed by additional mutations, PomA-N194Y or PomB-S27T. Moreover, the motility of the PomB-F22Y mutant was resistant to phenamil, a specific inhibitor for the Na+ channel. When PomB-F22 was changed to other amino acids and the effects on swimming ability were investigated, replacement with a hydrophilic residue decreased the maximum swimming speed and conferred strong resistance to phenamil. From these results, we speculate that the Na+ flux is reduced by the PomB-F22Y mutation, and that PomB-F22 is important for the effective release of Na+ from PomB-D24.



ChemInform ◽  
2004 ◽  
Vol 35 (50) ◽  
Author(s):  
Rumiko Shimazawa ◽  
Mika Gochomori ◽  
Ryuichi Shirai


2004 ◽  
Vol 14 (16) ◽  
pp. 4339-4342 ◽  
Author(s):  
Rumiko Shimazawa ◽  
Mika Gochomori ◽  
Ryuichi Shirai




1994 ◽  
Vol 14 (4) ◽  
pp. 2777-2785 ◽  
Author(s):  
Z Songyang ◽  
S E Shoelson ◽  
J McGlade ◽  
P Olivier ◽  
T Pawson ◽  
...  

Src homology 2 (SH2) domains provide specificity to intracellular signaling by binding to specific phosphotyrosine (phospho-Tyr)-containing sequences. We recently developed a technique using a degenerate phosphopeptide library to predict the specificity of individual SH2 domains (src family members, Abl, Nck, Sem5, phospholipase C-gamma, p85 subunit of phosphatidylinositol-3-kinase, and SHPTP2 (Z. Songyang, S. E. Shoelson, M. Chaudhuri, G. Gish, T. Pawson, W. G. Haser, F. King, T. Roberts, S. Ratnofsky, R. J. Lechleider, B. G. Neel, R. B. Birge, J. E. Fajardo, M. M. Chou, H. Hanafusa, B. Schaffhausen, and L. C. Cantley, Cell 72:767-778, 1993). We report here the optimal recognition motifs for SH2 domains from GRB-2, Drk, Csk, Vav, fps/fes, SHC, Syk (carboxy-terminal SH2), 3BP2, and HCP (amino-terminal SH2 domain, also called PTP1C and SHPTP1). As predicted, SH2 domains from proteins that fall into group I on the basis of a Phe or Tyr at the beta D5 position (GRB-2, 3BP2, Csk, fps/fes, Syk C-terminal SH2) select phosphopeptides with the general motif phospho-Tyr-hydrophilic (residue)-hydrophilic (residue)-hydrophobic (residue). The SH2 domains of SHC and HCP (group III proteins with Ile, Leu, of Cys at the beta D5 position) selected the general motif phospho-Tyr-hydrophobic-Xxx-hydrophobic, also as predicted. Vav, which has a Thr at the beta D5 position, selected phospho-Tyr-Met-Glu-Pro as the optimal motif. Each SH2 domain selected a unique optimal motif distinct from motifs previously determined for other SH2 domains. These motifs are used to predict potential sites in signaling proteins for interaction with specific SH2 domain-containing proteins. The Syk SH2 domain is predicted to bind to Tyr-hydrophilic-hydrophilic-Leu/Ile motifs like those repeated at 10-residue intervals in T- and B-cell receptor-associated proteins. SHC is predicted to bind to a subgroup og these same motifs. A structural basis for the association of Csk with Src family members is also suggested from these studies.



1994 ◽  
Vol 14 (4) ◽  
pp. 2777-2785
Author(s):  
Z Songyang ◽  
S E Shoelson ◽  
J McGlade ◽  
P Olivier ◽  
T Pawson ◽  
...  

Src homology 2 (SH2) domains provide specificity to intracellular signaling by binding to specific phosphotyrosine (phospho-Tyr)-containing sequences. We recently developed a technique using a degenerate phosphopeptide library to predict the specificity of individual SH2 domains (src family members, Abl, Nck, Sem5, phospholipase C-gamma, p85 subunit of phosphatidylinositol-3-kinase, and SHPTP2 (Z. Songyang, S. E. Shoelson, M. Chaudhuri, G. Gish, T. Pawson, W. G. Haser, F. King, T. Roberts, S. Ratnofsky, R. J. Lechleider, B. G. Neel, R. B. Birge, J. E. Fajardo, M. M. Chou, H. Hanafusa, B. Schaffhausen, and L. C. Cantley, Cell 72:767-778, 1993). We report here the optimal recognition motifs for SH2 domains from GRB-2, Drk, Csk, Vav, fps/fes, SHC, Syk (carboxy-terminal SH2), 3BP2, and HCP (amino-terminal SH2 domain, also called PTP1C and SHPTP1). As predicted, SH2 domains from proteins that fall into group I on the basis of a Phe or Tyr at the beta D5 position (GRB-2, 3BP2, Csk, fps/fes, Syk C-terminal SH2) select phosphopeptides with the general motif phospho-Tyr-hydrophilic (residue)-hydrophilic (residue)-hydrophobic (residue). The SH2 domains of SHC and HCP (group III proteins with Ile, Leu, of Cys at the beta D5 position) selected the general motif phospho-Tyr-hydrophobic-Xxx-hydrophobic, also as predicted. Vav, which has a Thr at the beta D5 position, selected phospho-Tyr-Met-Glu-Pro as the optimal motif. Each SH2 domain selected a unique optimal motif distinct from motifs previously determined for other SH2 domains. These motifs are used to predict potential sites in signaling proteins for interaction with specific SH2 domain-containing proteins. The Syk SH2 domain is predicted to bind to Tyr-hydrophilic-hydrophilic-Leu/Ile motifs like those repeated at 10-residue intervals in T- and B-cell receptor-associated proteins. SHC is predicted to bind to a subgroup og these same motifs. A structural basis for the association of Csk with Src family members is also suggested from these studies.



Sign in / Sign up

Export Citation Format

Share Document