Interlimb coupling strength scales with movement amplitude

2008 ◽  
Vol 437 (1) ◽  
pp. 10-14 ◽  
Author(s):  
C. (Lieke) E. Peper ◽  
Betteco J. de Boer ◽  
Harjo J. de Poel ◽  
Peter J. Beek
2020 ◽  
Vol 10 (10) ◽  
pp. 724 ◽  
Author(s):  
Harjo J. de Poel ◽  
Melvyn Roerdink ◽  
C. (Lieke) E. Peper ◽  
Peter J. Beek

The stability of rhythmic interlimb coordination is governed by the coupling between limb movements. While it is amply documented how coordinative performance depends on movement frequency, theoretical considerations and recent empirical findings suggest that interlimb coupling (and hence coordinative stability) is actually mediated more by movement amplitude. Here, we present the results of a reanalysis of the data of Post, Peper, and Beek (2000), which were collected in an experiment aimed at teasing apart the effects of frequency and amplitude on coordinative stability of both steady-state and perturbed in-phase and antiphase interlimb coordination. The dataset in question was selected because we found indications that the according results were prone to artifacts, which may have obscured the potential effects of amplitude on the post-perturbation stability of interlimb coordination. We therefore redid the same analysis based on movement signals that were normalized each half-cycle for variations in oscillation center and movement frequency. With this refined analysis we found that (1) stability of both steady-state and perturbed coordination indeed seemed to depend more on amplitude than on movement frequency per se, and that (2) whereas steady-state antiphase coordination became less stable with increasing frequency for prescribed amplitudes, in-phase coordination became more stable at higher frequencies. Such effects may have been obscured in previous studies due to (1) unnoticed changes in performed amplitudes, and/or (2) artifacts related to inappropriate data normalization. The results of the present reanalysis therefore give cause for reconsidering the relation between the frequency, amplitude, and stability of interlimb coordination.


2011 ◽  
Vol 42 (01) ◽  
Author(s):  
A. Bock ◽  
J. Huebl ◽  
S. Siegert ◽  
V. Litvak ◽  
G.H. Schneider ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Mustafa A. Amin ◽  
Andrew J. Long ◽  
Zong-Gang Mou ◽  
Paul M. Saffin

Abstract We investigate the production of photons from coherently oscillating, spatially localized clumps of axionic fields (oscillons and axion stars) in the presence of external electromagnetic fields. We delineate different qualitative behaviour of the photon luminosity in terms of an effective dimensionless coupling parameter constructed out of the axion-photon coupling, and field amplitude, oscillation frequency and radius of the axion star. For small values of this dimensionless coupling, we provide a general analytic formula for the dipole radiation field and the photon luminosity per solid angle, including a strong dependence on the radius of the configuration. For moderate to large coupling, we report on a non-monotonic behavior of the luminosity with the coupling strength in the presence of external magnetic fields. After an initial rise in luminosity with the coupling strength, we see a suppression (by an order of magnitude or more compared to the dipole radiation approximation) at moderately large coupling. At sufficiently large coupling, we find a transition to a regime of exponential growth of the luminosity due to parametric resonance. We carry out 3+1 dimensional lattice simulations of axion electrodynamics, at small and large coupling, including non-perturbative effects of parametric resonance as well as backreaction effects when necessary. We also discuss medium (plasma) effects that lead to resonant axion to photon conversion, relevance of the coherence of the soliton, and implications of our results in astrophysical and cosmological settings.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Isabella Boventer ◽  
Christine Dörflinger ◽  
Tim Wolz ◽  
Rair Macêdo ◽  
Romain Lebrun ◽  
...  
Keyword(s):  

2019 ◽  
Vol 33 (29) ◽  
pp. 1950351 ◽  
Author(s):  
Dawei Ding ◽  
Xiaolei Yao ◽  
Hongwei Zhang

In this paper, the complex projection synchronization problem of fractional complex-valued dynamic networks is investigated. Considering the time-varying coupling and unknown parameters of the fractional order complex network, several decentralized adaptive strategies are designed to adjust the coupling strength and controller feedback gain in order to investigate the complex projection synchronization problem of the system. Moreover, based on the designed identification law, the uncertain parameters in the network can be estimated. Using adaptive law which balances the time-varying coupling strength and the feedback gain of the controller, some sufficient conditions are obtained for the complex projection synchronization of complex networks. Finally, numerical simulation examples are provided to illustrate the efficiency of the complex projection synchronization strategies of the fractional order complex dynamic networks.


2012 ◽  
Vol 11 (03) ◽  
pp. 1250026 ◽  
Author(s):  
CHENG-SHUN WANG ◽  
YU-FANG CHEN ◽  
JING-JIN XIAO

Properties of the excited state of strong-coupling impurity bound polaron in an asymmetric quantum dot are studied by using linear combination operator and unitary transformation methods. The first internal excited state energy, the excitation energy and the transition frequency between the first internal excited and the ground states of the impurity bound polaron as functions of the transverse and the longitudinal effective confinement lengths of the dot, the electron–phonon coupling strength and the Coulomb bound potential were derived. Our numerical results show that they will increase with decreasing the effective confinement lengths, due to interesting quantum size confining effects. But they are an increasing functions of the Coulomb bound potential. The first internal excited state energy is a decreasing function of the electron–phonon coupling strength whereas the transition frequency and the excitation energy are an increasing one of the electron–phonon coupling strength.


2016 ◽  
Vol 33 (3) ◽  
pp. 033401
Author(s):  
Liang-Hui Huang ◽  
Peng-Jun Wang ◽  
Zeng-Ming Meng ◽  
Peng Peng ◽  
Liang-Chao Chen ◽  
...  

1999 ◽  
Vol 09 (10) ◽  
pp. 2105-2126 ◽  
Author(s):  
TAO YANG ◽  
LEON O. CHUA

Small-world phenomenon can occur in coupled dynamical systems which are highly clustered at a local level and yet strongly coupled at the global level. We show that cellular neural networks (CNN's) can exhibit "small-world phenomenon". We generalize the "characteristic path length" from previous works on "small-world phenomenon" into a "characteristic coupling strength" for measuring the average coupling strength of the outputs of CNN's. We also provide a simplified algorithm for calculating the "characteristic coupling strength" with a reasonable amount of computing time. We define a "clustering coefficient" and show how it can be calculated by a horizontal "hole detection" CNN, followed by a vertical "hole detection" CNN. Evolutions of the game-of-life CNN with different initial conditions are used to illustrate the emergence of a "small-world phenomenon". Our results show that the well-known game-of-life CNN is not a small-world network. However, generalized CNN life games whose individuals have strong mobility and high survival rate can exhibit small-world phenomenon in a robust way. Our simulations confirm the conjecture that a population with a strong mobility is more likely to qualify as a small world. CNN games whose individuals have weak mobility can also exhibit a small-world phenomenon under a proper choice of initial conditions. However, the resulting small worlds depend strongly on the initial conditions, and are therefore not robust.


2001 ◽  
Vol 37 (4) ◽  
pp. 2411-2413 ◽  
Author(s):  
You Xu ◽  
Jiehui Yang ◽  
Xijuan Zhang ◽  
Fang Zhang ◽  
M. Guillot

Sign in / Sign up

Export Citation Format

Share Document