virtual prototypes
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 38)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol 65 (1) ◽  
Author(s):  
Vladimir Herdt ◽  
Rolf Drechsler

AbstractVirtual prototypes (VPs) are crucial in today’s design flow. VPs are predominantly created in SystemC transaction-level modeling (TLM) and are leveraged for early software development and other system-level use cases. Recently, virtual prototyping has been introduced for the emerging RISC-V instruction set architecture (ISA) and become an important piece of the growing RISC-V ecosystem. In this paper, we present enhanced virtual prototyping solutions tailored for RISC-V. The foundation is an advanced open source RISC-V VP implemented in SystemC TLM and designed as a configurable and extensible platform. It scales from small bare-metal systems to large multi-core systems that run applications on top of the Linux operating system. Based on the RISC-V VP, this paper also discusses advanced VP-based verification approaches and open challenges. In combination, we provide for the first time an integrated and unified overview and perspective on advanced virtual prototyping for RISC-V.


Author(s):  
Marco Nicola Mastrone ◽  
Franco Concli

AbstractIn the last decade, computer-aided engineering (CAE) tools have become a determinant factor in the analysis of engineering problems. In fact, they bring a clear reduction of time in the design phase of a new product thanks to parametrical studies based on virtual prototypes. The application of such tools to gearboxes allowed engineers to study the efficiency and lubrication inside transmissions. However, the difficulties of handling the computational domain are still a concern for complex system configurations. For this reason, the authors maintain that it is fundamental to introduce time efficient algorithms that enable the effective study of any kind of gear, e.g., helical and bevel configurations. In this work, a new mesh handling strategy specifically suited for this kind of studies is presented. The methodology is based on the Global Remeshing Approach with Mesh Clustering (GRAMC) process that drastically reduces the simulation time by minimizing the effort for updating the grids. This procedure was tested on spur, helical, and bevel gears, thus demonstrating the flexibility of the approach. The comparison with experimentally measured power losses highlighted the good accuracy of the strategy. The algorithm was implemented in the opensource software OpenFOAM®.


2021 ◽  
Vol 19 (2) ◽  
pp. 320-335
Author(s):  
Nikola Horvat ◽  
Tomislav Martinec ◽  
Niccolo Becattini ◽  
Stanko Skec

2021 ◽  
pp. 1-15
Author(s):  
Mario E. Herrera-Cordero ◽  
Manuel Arias-Montiel ◽  
Marco Ceccarelli ◽  
Esther Lugo-Gonzalez

Abstract Co-simulation is widely used as a powerful tool for performance evaluation of systems design. This approach presents advantages over traditional design methodologies for saving money and time in the development process and the possibility of evaluating rapidly design alternatives by using virtual prototypes. This article presents an ADAMS/Matlab co-simulation for the dynamics and control of a Single-Wheel pendulum ROBot (SWROB) with inertial locomotion actuation to characterize design solutions by means of validation of analytical results. The obtained results by the proposed co-simulation show a significant performance based on the analytical and programming efforts in characterizing and simulating the designed system model. Moreover, open-loop experimental results are presented to validate both the analytical model and the virtual prototype.


2021 ◽  
Vol 12 (1) ◽  
pp. 511-527
Author(s):  
Yuan Fang ◽  
Yunan Zhang ◽  
Yinghui Shang ◽  
Tao Huang ◽  
Mengfei Yan

Abstract. Existing center-point steering models of a tracked omni-vehicle seldom consider the skid of the track (roller) grounding section, which is inconsistent with the actual steering process. In this study, for the three typical layout types, rectangular, hybrid, and centripetal, the steady center-point steering motion of a tracked omni-vehicle under skid conditions is analyzed and a correction model is investigated. The numerical solution of the absolute lateral offset of the steering pole is obtained, and the influences of various structural parameters on the numerical solution are discussed. The steering angular velocity reduction coefficient is calculated, and the angular velocity of vehicles is corrected. The simulation of center-point steering motion is carried out on eight virtual prototypes, and the center-point steering motion experiment is carried out on three physical prototypes. The results show that the established correction model is more in line with the steering reality of the tracked omni-vehicle, and it can play a role in correcting the center-point steering angular velocity.


Sign in / Sign up

Export Citation Format

Share Document