soil δ15n
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 12)

H-INDEX

8
(FIVE YEARS 2)

SOIL ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 733-742
Author(s):  
Kaihua Liao ◽  
Xiaoming Lai ◽  
Qing Zhu

Abstract. The nitrogen-15 (15N) natural abundance composition (δ15N) in soils or plants is a useful tool to indicate the openness of ecosystem N cycling. This study aimed to evaluate the influence of the experimental warming on soil and plant δ15N. We applied a global meta-analysis method to synthesize 79 and 76 paired observations of soil and plant δ15N from 20 published studies, respectively. Results showed that the mean effect sizes of the soil and plant δ15N under experimental warming were −0.524 (95 % CI (confidence interval): −0.987 to −0.162) and 0.189 (95 % CI: −0.210 to 0.569), respectively. This indicated that soil δ15N had negative response to warming at the global scale, where warming had no significant effect on plant δ15N. Experimental warming significantly (p<0.05) decreased soil δ15N in Alkali and medium-textured soils, in grassland/meadow, under air warming, for a 4–10-year warming period and for an increase of >3 ∘C in temperature, whereas it significantly (p<0.05) increased soil δ15N in neutral and fine-textured soils and for an increase of 1.5–3 ∘C in temperature. Plant δ15N significantly (p<0.05) increased with increasing temperature in neutral and fine-textured soils and significantly (p<0.05) decreased in alkali soil. Latitude did not affect the warming effects on both soil and plant δ15N. However, the warming effect on soil δ15N was positively controlled by the mean annual temperature, which is related to the fact that the higher temperature can strengthen the activity of soil microbes. The effect of warming on plant δ15N had weaker relationships with environmental variables compared with that on soil δ15N. This implied that soil δ15N was more effective than plant δ15N in indicating the openness of global ecosystem N cycling.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2895
Author(s):  
Zhanxia Ma ◽  
Weixiong Wu ◽  
Juha M. Alatalo ◽  
Wuxiang Fu ◽  
Yang Bai

High fertilizer application and over-irrigation in sugarcane systems can cause considerable N2O emissions. Optimized water-fertilization management which reduces N2O emissions, while maintaining sugarcane biomass, is crucial, but may affect nitrogen fixation by sugarcane. This study evaluated the combined effect of water-fertilization on sugarcane biomass and nitrogen fixation in field trials in southern China. Treatments included drip and spray irrigation, with three levels (0% (low), 50% (medium), 100% (high)) of irrigation and of fertilizer. A rain-fed crop (no irrigation or fertilizer) was included as the control. The results showed that (1) spray irrigation with medium water and high fertilization increased biomass. The optimum combination in sugarcane elongation stage was drip irrigation with medium water and high fertilization, while drip irrigation with high water and high fertilization was the best choice for maturity stage. (2) For sugarcane nitrogen (δ15N) content, spray irrigation with medium water and high fertilization was the best combination in seedling and tillering stages. The optimum combination in the elongation stage was drip irrigation with medium water and high fertilization, and in maturity stage was drip irrigation with high water and high fertilization. (3) For soil (δ15N content), drip irrigation with high water and high fertilization proved optimal for seedling, tillering, and maturity stages. (4) In seedling stage, sugarcane (δ15N content) was found to be strongly correlated with leaf area index, soil water, soil temperature, and soil electrical conductivity. Soil (δ15N content) was correlated with photosynthesis and soil temperature. In conclusion, drip irrigation appears most suitable for field planting, while the best treatment in seedling and tillering stages is medium water-high fertilization, and that the best in elongation stage is high water-medium fertilization. The optimum water-fertilizer combinations identified here can provide a scientific basis for optimization and management of irrigation and fertilization in China and other regions with similar environments.


2021 ◽  
Author(s):  
Kaihua Liao ◽  
Xiaoming Lai ◽  
Qing Zhu

Abstract. The 15N natural abundance composition (δ15N) in soils or plants is a useful tool to indicate the openness of ecosystem N cycling. This study was aimed to evaluate the influence of the global warming on soil and plant δ15N. We applied a global meta-analysis method to synthesize 79 and 76 paired observations for soil and plant δ15N from 20 published studies, respectively. Results showed that the mean effect sizes of the soil and plant δ15N under experimental warming were −0.524 (95 % CI: −0.987 to −0.162) and 0.189 (95 % CI: −0.210 to 0.569), respectively. This indicated that soil and plant δ15N had negative and positive responses to warming at the global scale, respectively. Experimental warming significantly (p < 0.05) decreased soil δ15N in Alkali soil, grassland/meadow, and under air warming, whereas it significantly (p < 0.05) increased soil δ15N in neutral soil. Plant δ15N significantly (p < 0.05) increased with increasing temperature in neutral soil and significantly (p < 0.05) decreased in alkali soil. Latitude did not affect the warming effects on both soil and plant δ15N. However, the warming effect on soil δ15N was positively controlled by the mean annual temperature, which is related to the fact that the higher temperature can strengthen the activity of soil microbes. The effect of warming on plant δ15N had weaker relationships with environmental variables compared with that on soil δ15N. This implied that soil δ15N tended to be more efficient in indicating the openness of global ecosystem N cycling than plant δ15N.


SOIL ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 83-94
Author(s):  
Simon Baumgartner ◽  
Marijn Bauters ◽  
Matti Barthel ◽  
Travis W. Drake ◽  
Landry C. Ntaboba ◽  
...  

Abstract. Nitrogen (N) availability can be highly variable in tropical forests on regional and local scales. While environmental gradients influence N cycling on a regional scale, topography is known to affect N availability on a local scale. We compared natural abundance of 15N isotopes of soil profiles in tropical lowland forest, tropical montane forest, and subtropical Miombo woodland within the Congo Basin as a proxy to assess ecosystem-level differences in N cycling. Soil δ15N profiles indicated that N cycling in the montane forest is relatively more closed and dominated by organic N turnover, whereas the lowland forest and Miombo woodland experienced a more open N cycle dominated by inorganic N. Furthermore, we examined the effect of slope gradient on soil δ15N within forest types to quantify local differences induced by topography. Our results show that slope gradient only affects the soil δ15N in the Miombo forest, which is prone to erosion due to a lower vegetation cover and intense rainfall at the onset of the wet season. Lowland forest, on the other hand, with a flat topography and protective vegetation cover, showed no influence of topography on soil δ15N in our study site. Despite the steep topography, slope angles do not affect soil δ15N in the montane forest, although stable isotope signatures exhibited higher variability within this ecosystem. A pan-tropical analysis of soil δ15N values (i.e., from our study and literature) reveals that soil δ15N in tropical forests is best explained by factors controlling erosion, namely mean annual precipitation, leaf area index, and slope gradient. Erosive forces vary immensely between different tropical forest ecosystems, and our results highlight the need for more spatial coverage of N cycling studies in tropical forests, to further elucidate the local impact of topography on N cycling in this biome.


2020 ◽  
Author(s):  
Simon Baumgartner ◽  
Marijn Bauters ◽  
Matti Barthel ◽  
Travis William Drake ◽  
Landry Cizungu Ntaboba ◽  
...  

Abstract. Nitrogen (N) availability can be highly variable in tropical forests on a regional and on a local scale. While environmental gradients influence N cycling on a regional scale, topography is known to affect N availability on a local scale. We compared stable isotope signatures (δ15N) of soil profiles in tropical lowland forest, tropical montane forest, and subtropical Miombo woodland within the Congo Basin as a proxy to assess ecosystem-level differences in N cycling. Furthermore, we examined the effect of surface slope angles on δ15N in the same forests to quantify local differences induced by topography. Soil δ15N profiles indicated that the N cycling in in the montane forest is more closed and dominated by organic N turnover, whereas the lowland forest and Miombo woodland experienced a more open N cycle dominated by inorganic N. Furthermore, our results show that slope angles only affects the soil δ15N signature in the Miombo forest, which is prone to erosion due to the lower vegetation cover and intense rainfalls at the onset of the wet season. Lowland forest, on the other hand, with a flat topography and protective vegetation cover, showed no influence of topography on soil N cycling. Values from the montane forest showed high variability in stable isotope signatures, but they were not constrained by topography. A pan-tropical analysis of soil δ15N values (i.e. from our study and the literature) reveals that soil δ15N is best explained by factors controlling erosion, namely mean annual precipitation, leaf area index, and slope angles. The erosive forces vary immensely between different tropical forest ecosystems and our results highlight the need of more spatial coverage of N-cycling studies in tropical forests, to further elucidate the local impact of topography on N cycling in this biome.


2020 ◽  
Vol 20 (9) ◽  
pp. 3283-3299
Author(s):  
Woo-Jung Choi ◽  
Jin-Hyeob Kwak ◽  
Hyun-Jin Park ◽  
Hye In Yang ◽  
Se-In Park ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 433
Author(s):  
Xing Zhao ◽  
Xingliang Xu ◽  
Fang Wang ◽  
Isabel Greenberg ◽  
Min Liu ◽  
...  

Soils δ13C and δ15N are now regarded as useful indicators of nitrogen (N) status and dynamics of soil organic carbon (SOC). Numerous studies have explored the effects of various factors on soils δ13C and δ15N in terrestrial ecosystems on different scales, but it remains unclear how co-varying climatic, edaphic and biotic factors independently contribute to the variation in soil δ13C and δ15N in temperate grasslands on a large scale. To answer the above question, a large-scale soil collection was carried out along a vegetation transect across the temperate grasslands of Inner Mongolia. We found that mean annual precipitation (MAP) and mean annual temperature (MAT) do not correlate with soil δ15N along the transect, while soil δ13C linearly decreased with MAP and MAT. Soil δ15N logarithmically increased with concentrations of SOC, total N and total P. By comparison, soil δ13C linearly decreased with SOC, total N and total P. Soil δ15N logarithmically increased with microbial biomass C and microbial biomass N, while soil δ13C linearly decreased with microbial biomass C and microbial biomass N. Plant belowground biomass linearly increased with soil δ15N but decreased with soil δ13C. Soil δ15N decreased with soil δ13C along the transect. Multiple linear regressions showed that biotic and edaphic factors such as microbial biomass C and total N exert more effect on soil δ15N, whereas climatic and edaphic factors such as MAT and total P have more impact on soil δ13C. These findings show that soil C and N cycles in temperate grasslands are, to some extent, decoupled and dominantly controlled by different factors. Further investigations should focus on those ecological processes leading to decoupling of C and N cycles in temperate grassland soils.


CATENA ◽  
2019 ◽  
Vol 183 ◽  
pp. 104236 ◽  
Author(s):  
Yan Shan ◽  
Mingbin Huang ◽  
Lizhu Suo ◽  
Xiaofang Zhao ◽  
Lianhai Wu

Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 557 ◽  
Author(s):  
Xue Wang ◽  
Yong Jiang ◽  
Haiyan Ren ◽  
Fei-Hai Yu ◽  
Mai-He Li

The natural abundance of stable nitrogen (N) isotope (δ15N) in plants and soils can reflect N cycling processes in ecosystems. However, we still do not fully understand patterns of plant and soil δ15N at alpine treelines and shrublines in different climate zones. We measured δ15N and N concentration in leaves of trees and shrubs and also in soils along elevational gradients from lower altitudes to the upper limits of treelines and shrublines in subtropical, dry- and wet-temperate regions in China. The patterns of leaf δ15N in trees and shrubs in response to altitude changes were consistent, with lower values occurring at higher altitude in all three climate zones, but such patterns did not exist for leaf Δδ15N and soil δ15N. Average δ15N values of leaves (−1.2‰) and soils (5.6‰) in the subtropical region were significantly higher than those in the two temperate regions (−3.4‰ and 3.2‰, respectively). Significant higher δ15N values in subtro4pical forest compared with temperate forests prove that N cycles are more open in warm regions. The different responses of leaf and soil δ15N to altitude indicate complex mechanisms of soil biogeochemical process and N sources uptake with environmental variations.


Sign in / Sign up

Export Citation Format

Share Document