gene architecture
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 15)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Author(s):  
En-Jung Hsieh ◽  
Wendar Lin ◽  
Wolfgang Schmidt

Abstract Iron (Fe) is an essential micronutrient that plays pivotal roles as electron donor and catalyst across organisms. In plants, variable, often insufficient Fe supply necessitates mechanisms that constantly attune Fe uptake rates and recalibrate cellular Fe homeostasis. Here, we show that short-term (0.5, 6, and 12 h) exposure of Arabidopsis thaliana plants to Fe deficiency triggered massive changes in gene activity governed by transcription and alternative splicing (AS), regulatory layers that were to a large extent mutually exclusive. Such preclusion was not observed for genes that are directly involved in the acquisition of Fe, which appears to be concordantly regulated by both expression and AS. Generally, genes with lower splice site strengths and higher intron numbers were more likely to be regulated by AS, no dependence was on gene architecture was observed for transcriptionally controlled genes. Conspicuously, specific processes were associated with particular genomic features and biased towards either regulatory mode, suggesting that genomic hardwiring is functionally biased. Early changes in splicing patterns were, in many cases, congruent with later changes in transcript or protein abundance, thus contributing to the pronounced transcriptome-proteome discordance observed in plants.


2021 ◽  
Author(s):  
En-Jung Hsieh ◽  
Wedar Lin ◽  
Wolfgang Schmidt

Iron (Fe) is an essential micronutrient that plays pivotal roles as electron donor and catalyst across organisms. In plants, variable, often insufficient Fe supply necessitates mechanisms that constantly attune Fe uptake rates and recalibrate cellular Fe homeostasis. Here, we show that short-term (0.5, 6, and 12 h) exposure of Arabidopsis thaliana plants to Fe deficiency triggered massive changes in gene activity governed by transcription and alternative splicing (AS), regulatory layers that were to a large extent mutually exclusive. Such preclusion was not observed for genes that are directly involved in the acquisition of Fe, which appears to be concordantly regulated by both expression and AS. Generally, genes with lower splice site strengths and higher intron numbers were more likely to be regulated by AS, no dependence was on gene architecture was observed for transcriptionally controlled genes. Conspicuously, specific processes were associated with particular genomic features and biased towards either regulatory mode, suggesting that genomic hardwiring is functionally biased. Early changes in splicing patterns were, in many cases, congruent with later changes in transcript or protein abundance, thus contributing to the pronounced transcriptome-proteome discordance observed in plants.


2021 ◽  
Author(s):  
Maximiliano Beckel ◽  
Bruno Kaufman ◽  
Marcelo Yanovsky ◽  
Ariel Chernomoretz

Despite the fact that the main steps of the splicing process are similar across eukaryotes, differences in splicing factors, gene architecture and sequence divergences in splicing signals suggest clade-specific features of splicing and its regulation. In this work we study conserved and divergent signatures embedded in the sequence composition of eukaryotic 5′ splicing sites. We considered a regularized maximum entropy modeling framework to mine for non-trivial two-site correlations in donor sequences of 14 different eukaryote organisms. Our approach allowed us to accommodate and extend, within a unified framework, many of the regularities observed in previous works like the relationship between the frequency of occurrence of natural sequences and the corresponding site's strength, or the negative epistatic effects between exonic and intronic consensus sites. In addition, performing a systematic and comparative analysis of 5′ss we showed that lineage information could be traced not only from single-site frequencies but also from joint di-nucleotide probabilities of donor sequences. Noticeably, we could also identify specific two-site coupling patterns for plants and for animals and argue that these differences, in association with taxon-specific features involving U6 snRNP, could be the basis for differences in splicing regulation previously reported between these groups.


2021 ◽  
Vol 8 ◽  
Author(s):  
Katherine Dwyer ◽  
Neha Agarwal ◽  
Alisa Gega ◽  
Athar Ansari

An evolutionarily conserved feature of introns is their ability to enhance expression of genes that harbor them. Introns have been shown to regulate gene expression at the transcription and post-transcription level. The general perception is that a promoter-proximal intron is most efficient in enhancing gene expression and the effect diminishes with the increase in distance from the promoter. Here we show that the intron regains its positive influence on gene expression when in proximity to the terminator. We inserted ACT1 intron into different positions within IMD4 and INO1 genes. Transcription Run-On (TRO) analysis revealed that the transcription of both IMD4 and INO1 was maximal in constructs with a promoter-proximal intron and decreased with the increase in distance of the intron from the promoter. However, activation was partially restored when the intron was placed close to the terminator. We previously demonstrated that the promoter-proximal intron stimulates transcription by affecting promoter directionality through gene looping-mediated recruitment of termination factors in the vicinity of the promoter region. Here we show that the terminator-proximal intron also enhances promoter directionality and results in compact gene architecture with the promoter and terminator regions in close physical proximity. Furthermore, we show that both the promoter and terminator-proximal introns facilitate assembly or stabilization of the preinitiation complex (PIC) on the promoter. On the basis of these findings, we propose that proximity to both the promoter and the terminator regions affects the transcription regulatory potential of an intron, and the terminator-proximal intron enhances transcription by affecting both the assembly of preinitiation complex and promoter directionality.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Daniel R Knight ◽  
Korakrit Imwattana ◽  
Brian Kullin ◽  
Enzo Guerrero-Araya ◽  
Daniel Paredes-Sabja ◽  
...  

Clostridioides difficile infection (CDI) remains an urgent global One Health threat. The genetic heterogeneity seen across C. difficile underscores its wide ecological versatility and has driven the significant changes in CDI epidemiology seen in the last 20 years. We analysed an international collection of over 12,000 C. difficile genomes spanning the eight currently defined phylogenetic clades. Through whole-genome average nucleotide identity, and pangenomic and Bayesian analyses, we identified major taxonomic incoherence with clear species boundaries for each of the recently described cryptic clades CI-III. The emergence of these three novel genomospecies predates clades C1-5 by millions of years, rewriting the global population structure of C. difficile specifically and taxonomy of the Peptostreptococcaceae in general. These genomospecies all show unique and highly divergent toxin gene architecture, advancing our understanding of the evolution of C. difficile and close relatives. Beyond the taxonomic ramifications, this work may impact the diagnosis of CDI.


2021 ◽  
Vol 8 ◽  
Author(s):  
Katherine Dwyer ◽  
Neha Agarwal ◽  
Lori Pile ◽  
Athar Ansari

Introns impact several vital aspects of eukaryotic organisms like proteomic plasticity, genomic stability, stress response and gene expression. A role for introns in the regulation of gene expression at the level of transcription has been known for more than thirty years. The molecular basis underlying the phenomenon, however, is still not entirely clear. An important clue came from studies performed in budding yeast that indicate that the presence of an intron within a gene results in formation of a multi-looped gene architecture. When looping is defective, these interactions are abolished, and there is no enhancement of transcription despite normal splicing. In this review, we highlight several potential mechanisms through which looping interactions may enhance transcription. The promoter-5′ splice site interaction can facilitate initiation of transcription, the terminator-3′ splice site interaction can enable efficient termination of transcription, while the promoter-terminator interaction can enhance promoter directionality and expedite reinitiation of transcription. Like yeast, mammalian genes also exhibit an intragenic interaction of the promoter with the gene body, especially exons. Such promoter-exon interactions may be responsible for splicing-dependent transcriptional regulation. Thus, the splicing-facilitated changes in gene architecture may play a critical role in regulation of transcription in yeast as well as in higher eukaryotes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nobuaki Kono ◽  
Hiroyuki Nakamura ◽  
Masaru Mori ◽  
Masaru Tomita ◽  
Kazuharu Arakawa

Abstract Orb-weaving spiders have two main methods of prey capture: cribellate spiders use dry, sticky capture threads, and ecribellate spiders use viscid glue droplets. Predation behaviour is a major evolutionary driving force, and it is important on spider phylogeny whether the cribellate and ecribellate spiders each evolved the orb architecture independently or both strategies were derived from an ancient orb web. These hypotheses have been discussed based on behavioural and morphological characteristics, with little discussion on this subject from the perspective of molecular materials of orb web, since there is little information about cribellate spider-associated spidroin genes. Here, we present in detail a spidroin catalogue of six uloborid species of cribellate orb-weaving spiders, including cribellate and pseudoflagelliform spidroins, with transcriptome assembly complemented with long read sequencing, where silk composition is confirmed by proteomics. Comparative analysis across families (Araneidae and Uloboridae) shows that the gene architecture, repetitive domains, and amino acid frequencies of the orb web constituting silk proteins are similar among orb-weaving spiders regardless of the prey capture strategy. Notably, the fact that there is a difference only in the prey capture thread proteins strongly supports the monophyletic origin of the orb web.


Author(s):  
Daniel R. Knight ◽  
Korakrit Imwattana ◽  
Brian Kullin ◽  
Enzo Guerrero-Araya ◽  
Daniel Paredes-Sabja ◽  
...  

AbstractClostridioides difficile infection (CDI) remains an urgent global One Health threat. The genetic heterogeneity seen across C. difficile underscores its wide ecological versatility and has driven the significant changes in CDI epidemiology seen in the last 20 years. We analysed an international collection of over 12,000 C. difficile genomes spanning the eight currently defined phylogenetic clades. Through whole-genome average nucleotide identity, pangenomic and Bayesian analyses, we identified major taxonomic incoherence with clear species boundaries for each of the recently described cryptic clades CI-III. The emergence of these three novel genomospecies predates clades C1-5 by millions of years, rewriting the global population structure of C. difficile specifically and taxonomy of the Peptostreptococcaceae in general. These genomospecies all show unique and highly divergent toxin gene architecture, advancing our understanding of the evolution of C. difficile and close relatives. Beyond the taxonomic ramifications, this work impacts the diagnosis of CDI worldwide.


2020 ◽  
Vol 79 (2) ◽  
pp. 251-267.e6 ◽  
Author(s):  
Binyamin Zuckerman ◽  
Maya Ron ◽  
Martin Mikl ◽  
Eran Segal ◽  
Igor Ulitsky

Sign in / Sign up

Export Citation Format

Share Document