part motion
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 8)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Balaji Boopathi ◽  
Ramesh Gupta Burela ◽  
Ganeshthangaraj Ponniah

Linear vibratory feeder is one of the most extensively used part feeding systems in a production line. The part motion on the feeder can be sliding or hopping or a combination of these two. Based on the dynamics of part motion this paper identifies three distinct regimes. A mathematical model was developed that can predict the trend in conveying velocity in these regimes. This model can provide the parts position as a function of time and has considered relative displacement between the part and the conveying surface. The simulation was validated by performing experiments for a range of vibration frequencies and amplitudes.


2021 ◽  
Vol 12 (1) ◽  
pp. 381
Author(s):  
Yi Zou ◽  
Yuncai Liu

In the computer vision field, understanding human dynamics is not only a great challenge but also very meaningful work, which plays an indispensable role in public safety. Despite the complexity of human dynamics, physicists have found that pedestrian motion in a crowd is governed by some internal rules, which can be formulated as a motion model, and an effective model is of great importance for understanding and reconstructing human dynamics in various scenes. In this paper, we revisit the related research in social psychology and propose a two-part motion model based on the shortest path principle. One part of the model seeks the origin and destination of a pedestrian, and the other part generates the movement path of the pedestrian. With the proposed motion model, we simulated the movement behavior of pedestrians and classified them into various patterns. We next reconstructed the crowd motions in a real-world scene. In addition, to evaluate the effectiveness of the model in crowd motion simulations, we created a new indicator to quantitatively measure the correlation between two groups of crowd motion trajectories. The experimental results show that our motion model outperformed the state-of-the-art model in the above applications.


Author(s):  
B Balaji ◽  
Ramesh Gupta Burela ◽  
Ganeshthangaraj Ponniah

The motion of a part on a curved surface mounted upon a linear vibratory feeder is of great importance in mass production. In this article, the conveying surface or track is modelled by a bilinear surface inclined to all axes with the curvature varying throughout the surface. An experimental test rig is fabricated to study the part motion on the feeder surface. Dynamics of the part on the surface is derived and the path traced by the part is obtained numerically. The numeric model closely correlates with experimental results. Based on the control parameters two distinct regimes—slide and hop—are presented, highlighting their relation to frequency and amplitude of vibration of the feeder.


2016 ◽  
Vol E99.D (4) ◽  
pp. 1024-1031 ◽  
Author(s):  
Asako SOGA ◽  
Bin UMINO ◽  
Yuho YAZAKI ◽  
Motoko HIRAYAMA

Sign in / Sign up

Export Citation Format

Share Document