Part dynamics in the intermediate regime of a linear vibratory feeder

Author(s):  
Balaji Boopathi ◽  
Ramesh Gupta Burela ◽  
Ganeshthangaraj Ponniah

Linear vibratory feeder is one of the most extensively used part feeding systems in a production line. The part motion on the feeder can be sliding or hopping or a combination of these two. Based on the dynamics of part motion this paper identifies three distinct regimes. A mathematical model was developed that can predict the trend in conveying velocity in these regimes. This model can provide the parts position as a function of time and has considered relative displacement between the part and the conveying surface. The simulation was validated by performing experiments for a range of vibration frequencies and amplitudes.

Author(s):  
B Balaji ◽  
Ramesh Gupta Burela ◽  
Ganeshthangaraj Ponniah

The motion of a part on a curved surface mounted upon a linear vibratory feeder is of great importance in mass production. In this article, the conveying surface or track is modelled by a bilinear surface inclined to all axes with the curvature varying throughout the surface. An experimental test rig is fabricated to study the part motion on the feeder surface. Dynamics of the part on the surface is derived and the path traced by the part is obtained numerically. The numeric model closely correlates with experimental results. Based on the control parameters two distinct regimes—slide and hop—are presented, highlighting their relation to frequency and amplitude of vibration of the feeder.


Author(s):  
Emilio Moretti ◽  
Elena Tappia ◽  
Martina Mauri ◽  
Marco Melacini

AbstractIn a context where companies are striving to produce highly customised goods in small batches and within short lead times, increasing attention is being put on the design and management of part feeding systems. This research is the first to model automated part feeding to supermarkets in a factory environment, considering an innovative technology called vertical robotic storage and retrieval systems. This technology allows automating the storage, picking, and internal transportation activities in an integrated process, thanks to rack-climbing robots roaming in both the shop floor and the storage racks. We develop an analytical model based on the queuing network approach to analyse the system performance, and we use it to perform numerical experiments and to evaluate the design trade-offs with reference to a real case in the automotive industry. Results show that an increase in the number of robots leads to better performance since the positive impact on the response time is stronger than the negative impact on the waiting times of robots at the supermarkets due to congestion. Furthermore, a configuration with multiple small supermarkets improves the efficiency of the replenishment process, compared to a setting with few big supermarkets.


Author(s):  
Cheng Zhu ◽  
Tian Yu ◽  
Qing Chang ◽  
Jorge Arinez

Abstract In a multistage serial production line, products with defect can be repaired or reworked to ensure high product quality. This paper studies a multistage serial manufacturing system with quality rework loops. Rework is the activity to repair or repeat the work on the defect parts during manufacturing processes, and it adds to cost and cycle time. This paper introduces an event-based data-enabled mathematical model for a stochastic production line with quality rework loops. The system performance properties are analyzed and permanent production loss due to quality rework loops is identified. The mathematical model and system performance identification methodology are studied analytically through numerical case studies.


Vestnik IGEU ◽  
2019 ◽  
pp. 32-40
Author(s):  
S.A. Nesterov ◽  
N.A. Morozov ◽  
Yu.B. Kazakov

The effect of a magnetic spring is observed in electromechanical devices with limited pole sizes. Simultane-ous changing of the system magnetic conductivity after a relative displacement of the poles causes mag-netic tension forces. These forces in electromechanical magnetic fluid dampers have their own specific characteristics which have not been studied before. All this requires studying the effect of a magnetic spring on the damper power characteristics, estimating the effect of the properties of a magnetorheological suspension on the magnetic spring strength, nature of its change and combination of the action of magnetic forces and viscosity resistance to the piston movement. To do that, it is important to analyze the effect of a magnetic spring in statics, at a slow movement of the piston and its dynamic oscillations. The studies were based on the theory of natural experiment and methods of processing experimental results. We have obtained and analyzed dependences of the resistance force of the electromechanical magnetic fluid damper for different vibration frequencies and magnetic inductions. The effect of magnetic spring forces on the damper power characteristic has been investigated. It has been found how the damper resistance force is affected by the magnetic and hydrodynamic components. The use of a damper with alternating elements with high and low magnetic conductivities makes it possible to change the strength characteristic of electromechanical magnetic fluid dampers. The proportion of the force controlled by the magnetic field reaches 75 % of the total effort. The use of the magnetic spring effect allows increasing the damping efficiency at small amplitudes and vibration frequencies. Increasing the magnetic properties of a magnetorheological suspension enhances the effect of a magnetic spring if the piston is non-magnetic, and weakens it if it is a magnetic one. When the magnetic induction rises, the effect of the magnetic spring increases. By changing the initial piston position, it is possible to obtain an asymmetrical power characteristic, for example, without using valves and spools, to increase the rebound force and to reduce the compressive force. If there are no moving parts, the damper reliability increases.


2019 ◽  
Vol 1 (1) ◽  
pp. 545-550
Author(s):  
Marek Krynke ◽  
Krzysztof Mielczarek ◽  
Alan Vaško

Abstract The proper organization of work is to set the workflow to the slightest effort of man and machine operation to obtain maximum results. The article presents the problem of the allocation of personnel that occurs in a real company. The mathematical model for this issue was formulated. An algorithm solving the problem of personnel allocation is presented. The proposed analysis is a starting point for determining the production capacity and load of each workstation, which is particularly important when using multi-station work and balancing the production line.


2011 ◽  
Vol 328-330 ◽  
pp. 41-47
Author(s):  
Shi Long Wang ◽  
Heng Zhou ◽  
Jie Zhou ◽  
Rui Tang

Combining with the actual production case, a multi-objective optimization rescheduling problem about that multiple products with various manufacturing processes in auto-production line aiming at a single hoist production in sequence where a new product is inserted is studied. Mathematical model and algorithm with a new stochastic scheduling method are proposed in fully consideration of the equipment (tank) and constraint of manufacture process. The model and algorithm which have been used in auto-production line of a surface treatment over half a year can meet the practical production requirements.


2012 ◽  
Vol 152-154 ◽  
pp. 1030-1035
Author(s):  
Liang Han ◽  
M.M. Yang

It is known that vibratory feeders are the most versatile of all hopper feeding devices for small engineering parts and play a key role in assembly automation. However, there are still no reliable and effective professional teaching platforms for researching or demonstrating the principle of the parts conveying. The aim of this paper is to develop an optimal teaching platform based on the analysis of the working principle that the feeder follows. The structural design, elastic system and control system are studied in this paper. The vibration principle is verified by the teaching platform through the experiment and the results are promising.


2013 ◽  
Vol 769 ◽  
pp. 34-41 ◽  
Author(s):  
Jan Busch ◽  
Konja Knüppel

The individualisation of customer requirements and the increasing pressure to reduce manufacturing costs due to the internationalisation of markets requires undertakings to react flexibly and to ensure long-term competitiveness through innovations in production processes. As far as lowering manufacturing costs is concerned, there is considerable potential for rationalisation in assembly work. At the same time, it is expected that the provision and supply of parts in automated assembly systems will become a bottleneck in future with regard to quality, time and costs. The reason for this is that the part feeding systems traditionally used are stretched to their limits in terms of supply performance, flexibility and process reliability. Orienting parts in feeding systems is often the most technically demanding process. Active, aerodynamic orientation systems for feeding parts have been developed at the Institute of Production Systems and Logistics. The system’s parameters have had to be configured manually by experienced technicians to date. This work takes up a great deal of time. In order to minimise this time spent by users, a genetic algorithm (GA) is developed in this paper, which enables the optimum parameter values for unknown parts to be identified automatically. To this end, the optimisation problem to be solved, namely to identify the parameter values for aerodynamic orientation, is first described mathematically. The structure of the GA and its method of functioning are then explained. A methodology to accelerate the convergence speed of the GA is presented in this context, in that the quantity of individuals in each generation and the number of test parts observed is adapted to the quality of the solution in order to shorten the time needed to find the solution.


Sign in / Sign up

Export Citation Format

Share Document