immunologic reconstitution
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 2)

H-INDEX

17
(FIVE YEARS 1)

2019 ◽  
Vol 18 (3) ◽  
pp. 145-153
Author(s):  
D. N. Balashov

Advance protocols for the treatment most of oncology, hematology and some inherited disorders may lead to development severe secondary hypogammaglobulinaemia. Particularly, it is often caused by therapy with monoclonal antibodies binding B-cells (such as rituximab, belimumab, inotuzumab), therapy with inhibitors of tyrosine-kinase (imatinib, desatinib), as well as applying a variety of immunosuppressive and chemotherapy agents (steroids, azathioprine, cyclophosphamide etc.). It should be note, that chronic lymphoid leukemia and multiple myeloma could be complicated with hypogammaglobulinaemia, not only because of specific therapy, but also as features of the diseases. Hematopoietic stems cells transplantation can also lead to development severe and prolonged hypogammaglobulinaemia. This is associated with intensive immune/myeloablative therapy, as well as with immunologic reconstitution after transplantation. Modern intravenous immunoglobulins (IVIG) have a wide repertoire of pathogen-specific activity with high safety profile and constitute essential part of therapy patients with secondary hypogammaglobulinaemia. The paper presents literature review of IVIG usage in various clinical situations, as well as several clinical examples of personal experience.


Blood ◽  
2012 ◽  
Vol 120 (13) ◽  
pp. 2610-2619 ◽  
Author(s):  
Raffaello Cimbro ◽  
Lia Vassena ◽  
James Arthos ◽  
Claudia Cicala ◽  
John H. Kehrl ◽  
...  

Abstract Interleukin-7 (IL-7) is a nonredundant cytokine that plays a critical role in T-cell homeostasis and promotes immunologic reconstitution in lymphopenic hosts. Here, we show that IL-7, at doses that reflect suprahomeostatic concentrations achieved in lymphopenic hosts, is a potent and selective inducer of the gut-homing integrin α4β7 in human T cells, as documented both ex vivo and in vivo in patients enrolled in a clinical trial of IL-7 treatment. Induction of α4β7 by IL-7 occurs primarily in naive T cells and is associated with functional activation of the integrin, as indicated by increased binding activity for the specific α4β7 ligand, MAdCAM-1. The physiologic relevance of these findings was validated by the preferential homing of IL-7–treated naive human T cells to the intestinal compartment in humanized NOD/SCID/IL-2 receptor-γnull (NSG) mice. We also show that IL-7 triggers a peculiar activation program in naive T cells, characterized by the acquisition of memory-like phenotypic features and proliferation uncoupled from expression of classic T-cell activation markers. These findings provide a mechanism for the transient in vivo depletion of circulating T cells after IL-7 administration and suggest that intestinal homing and memory-like conversion of naive T cells are critical steps in the IL-7–driven immunologic reconstitution of lymphopenic hosts.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 320-320 ◽  
Author(s):  
Stefan O Ciurea ◽  
Rima M. Saliba ◽  
Ulas D. Bayraktar ◽  
Susan Xie ◽  
Gabriela Rondon ◽  
...  

Abstract Abstract 320 Background: HaploSCT has been commonly performed with a TCD graft using CD34+ selection; however, this has been limited by a higher non-relapse mortality (NRM) primarily related to infectious complications. An alternative approach using a TCR bone marrow graft and high-dose post-transplant cyclophosphamide (HDPTCy) in the setting of non-myeloablative conditioning has been reported to have lower NRM and acceptable rates of GVHD. Methods: We hypothesized that TCR HaploSCT using HDPTCy is associated with improved immunologic reconstitution, less NRM and better early outcomes compared with TCD HaploSCT, and analyzed 65 consecutive patients (pts) treated at UTMDACC with the same conditioning regimen, fludarabine (40mg/m2/day × 4), melphalan (140mg/m2) and thiotepa (10mg/kg). TCD HaploSCT pts were treated between 2001 and 2009, while TCR patients after 2009. 6 pts in the TCR group >55 years/comorbidities received reduced doses of melphalan (100mg/m2) and thiotepa (5mg/kg). There was no GVHD prophylaxis in the TCD group, while TCR group received HDPTCy (50mg/kg/day × 2) followed by tacrolimus and mycophenolate. Results: The median follow-up was 10 months (range 3.5–25) for the TCR group and 44 (11–79) months for the TCD group. Median age was 45 years (range 20–63) in the TCR group and 36 years (range 18–56) in the TCD group (p=0.02). 28% were > 50 years in the TCR compared with 6% in the TCD group (p=0.02). Diagnoses were: AML/MDS 50% vs. 79%, ALL 13% vs. 12%, CML 16% vs. 6%, lymphoma/CLL 9% vs. 3% in the TCR vs. TCD groups, respectively. Only 13 (41%) and 12 (36%) of pts were in remission at transplant in both groups, respectively (p=0.7). 10/16 (62.5%) pts with AML/MDS in the TCR group had poor risk cytogenetics vs. 13/26 (50%) pts in the TCD group. The donors were 5/10 allele match in 20/32 (63%) and 16/31 (52%) in the two groups, respectively. Median numbers of CD34+ cells infused were 2.5×10e6/kg in the TCR group and 10.5×10e6/kg in the TCD group. All pts in the TCD group had peripheral blood selected CD34+ cells while all but one received bone marrow stem cells in the TCR group. One pt had early death in each group. Primary engraftment was achieved in 94% in the TCR group and 81% in the TCD group (p=0.1). Day-100 NRM for all pts was 9% in the TCR group vs. 21% for the TCD group, and for pts in remission at transplant 0% vs. 42%, respectively (p=0.01). NRM at 1 year for all pts was 16% for the TCR group vs. 42% for the TCD group (p=0.03) (Figure1), while for pts in remission was 0% vs. 67% (p=0.001). The cumulative incidences of grade II-IV aGVHD was 27% vs. 11% (p=0.5) and cGVHD was 8% vs. 18%, in the TCR and TCD group, respectively (p=0.03). OS and PFS at 1 year post-transplant were 66% vs. 30% (p=0.02) and 45% vs. 21% (p=0.03) for the whole group, and 92% vs. 33% (p=0.03) and 80% vs. 25% (p=0.02) for pts in remission at transplant, respectively (Figure1). Improved NRM in the TCR group was related to significantly better immunologic reconstitution of T-cell subsets. On day 30 post transplant there was a significantly better recovery of absolute CD4 cells in the TCR group (median 24 vs. 2, p=0.004) and CD8 cells (median 20.5 vs. 1.5, p=0.036). CD4 cells remained significantly lower in the TCD group until after day 180 when the median CD4 count was 200.5 vs. 64 in the TCR group (p=0.04) while the difference in CD8 counts became non-significantly higher in the TCR after day 90 (median 119 vs. 29, p=0.23). Conclusion: TCR HaploSCT is associated with better immunologic reconstitution and improved early outcomes compared with TCD HaploSCT. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document