cardiac electromechanics
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 8)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 7 (2) ◽  
pp. 251-254
Author(s):  
Stephanie Appel ◽  
Tobias Gerach ◽  
Olaf Dössel ◽  
Axel Loewe

Abstract Today a variety of models describe the physiological behavior of the heart on a cellular level. The intracellular calcium concentration plays an important role, since it is the main driver for the active contraction of the heart. Due to different implementations of the calcium dynamics, simulating cardiac electromechanics can lead to severely different behaviors of the active tension when coupling the same tension model with different electrophysiological models. To handle these variations, we present an optimization tool that adapts the parameters of the most recent, human based tension model. The goal is to generate a physiologically valid tension development when coupled to an electrophysiological cellular model independent of the specifics of that model's calcium transient. In this work, we focus on a ventricular cell model. In order to identify the calcium-sensitive parameters, a sensitivity analysis of the tension model was carried out. In a further step, the cell model was adapted to reproduce the sarcomere length-dependent behavior of troponin C. With a maximum relative deviation of 20.3% per defined characteristic of the tension development, satisfactory results could be obtained for isometric twitch tension. Considering the length-dependent troponin handling, physiological behavior could be reproduced. In conclusion, we propose an algorithm to adapt the tension development model to any calcium transient input to achieve a physiologically valid active contraction on a cellular level. As a proof of concept, the algorithm is successfully applied to one of the most recent human ventricular cell models. This is an important step towards fully coupled electromechanical heart models, which are a valuable tool in personalized health care.


Author(s):  
Noha Shalaby ◽  
Nejib Zemzemi ◽  
Khalil Elkhodary

There is growing interest to better understand drug-induced cardiovascular complications and to predict undesirable side effects at as early a stage in the drug development process as possible. The purpose of this paper is to investigate computationally the influence of sodium ion channel blockage on cardiac electromechanics. To do so, we implement a myofiber orientation dependent passive stress model (Holzapfel-Ogden) in the multiphysics solver Chaste to simulate an imaged physiological model of the human ventricles. A dosage of a sodium channel blocker was then applied and its inhibitory effects on the electrical propagation across ventricles were modeled. We employ the Kerckhoffs active stress model to generate electrically excited contractile behavior of myofibers. Our predictions indicate that a delay in the electrical activation of ventricular tissue caused by the sodium channel blockage translates to a delay in the mechanical biomarkers that were investigated. Moreover, sodium channel blockage was found to increase left ventricular twist. A multiphysics computational framework from the cell level to the organ level was thus used to predict the effect of sodium channel blocking drugs on cardiac electromechanics.


2018 ◽  
Vol 9 ◽  
Author(s):  
Alessandro Loppini ◽  
Alessio Gizzi ◽  
Ricardo Ruiz-Baier ◽  
Christian Cherubini ◽  
Flavio H. Fenton ◽  
...  

PAMM ◽  
2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Minh Tuan Duong ◽  
David Holz ◽  
Muhannad Alkassar ◽  
Sven Dittrich ◽  
Sigrid Leyendecker

Sign in / Sign up

Export Citation Format

Share Document