maximum relative deviation
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 11)

H-INDEX

2
(FIVE YEARS 1)

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 602
Author(s):  
Víctor Zapatero ◽  
Álvaro Navarrete ◽  
Kiyoshi Tamaki ◽  
Marcos Curty

The decoy-state method in quantum key distribution (QKD) is a popular technique to approximately achieve the performance of ideal single-photon sources by means of simpler and practical laser sources. In high-speed decoy-state QKD systems, however, intensity correlations between succeeding pulses leak information about the users' intensity settings, thus invalidating a key assumption of this approach. Here, we solve this pressing problem by developing a general technique to incorporate arbitrary intensity correlations to the security analysis of decoy-state QKD. This technique only requires to experimentally quantify two main parameters: the correlation range and the maximum relative deviation between the selected and the actually emitted intensities. As a side contribution, we provide a non-standard derivation of the asymptotic secret key rate formula from the non-asymptotic one, in so revealing a necessary condition for the significance of the former.


2021 ◽  
Vol 7 (2) ◽  
pp. 251-254
Author(s):  
Stephanie Appel ◽  
Tobias Gerach ◽  
Olaf Dössel ◽  
Axel Loewe

Abstract Today a variety of models describe the physiological behavior of the heart on a cellular level. The intracellular calcium concentration plays an important role, since it is the main driver for the active contraction of the heart. Due to different implementations of the calcium dynamics, simulating cardiac electromechanics can lead to severely different behaviors of the active tension when coupling the same tension model with different electrophysiological models. To handle these variations, we present an optimization tool that adapts the parameters of the most recent, human based tension model. The goal is to generate a physiologically valid tension development when coupled to an electrophysiological cellular model independent of the specifics of that model's calcium transient. In this work, we focus on a ventricular cell model. In order to identify the calcium-sensitive parameters, a sensitivity analysis of the tension model was carried out. In a further step, the cell model was adapted to reproduce the sarcomere length-dependent behavior of troponin C. With a maximum relative deviation of 20.3% per defined characteristic of the tension development, satisfactory results could be obtained for isometric twitch tension. Considering the length-dependent troponin handling, physiological behavior could be reproduced. In conclusion, we propose an algorithm to adapt the tension development model to any calcium transient input to achieve a physiologically valid active contraction on a cellular level. As a proof of concept, the algorithm is successfully applied to one of the most recent human ventricular cell models. This is an important step towards fully coupled electromechanical heart models, which are a valuable tool in personalized health care.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3291
Author(s):  
Yiwei Wang ◽  
Lin Wang ◽  
Zhen Hu ◽  
Youli Li ◽  
Qiang Sun ◽  
...  

Hydrate-based technologies (HBTs) have high potential in many fields. The industrial application of HBTs is limited by the low conversion rate of the water into hydrate (RWH), and sodium lignin sulfonate (SLS) has the potential to solve the above problem. In order to make the HBTs in the presence of SLS applied in industry and promote the advances of commercial HBTs, the effect of SLS on the thermodynamic equilibrium hydrate formation pressure (Peq) was investigated for the first time, and a new model (which can predict the Peq) was proposed to quantitatively describe the thermodynamic effect of SLS on the hydrate formation. Then, the effects of pressure and initial SLS concentration on the hydrate formation rate (rR) at different stages in the process of hydrate formation were investigated for the first time to reveal the kinetic effect of SLS on hydrate formation. The experimental results show that SLS caused little negative thermodynamic effect on hydrate formation. The Peq of the ethylene-SLS solution system predicted by the model proposed in this work matches the experimental data well, with an average relative deviation of 1.6% and a maximum relative deviation of 4.7%. SLS increased RWH: the final RWH increased from 57.6 ± 1.6% to higher than 70.0% by using SLS, and the highest final RWH (77.0 ± 2.1%) was achieved when the initial SLS concentration was 0.1 mass%. The rR did not significantly change as RWH increased from 35% to 65% in the formation process in the presence of SLS. The effect of increasing pressure on increasing rR decreased with the increase in RWH when RWH was lower than 30%, and the difference in pressure led to little difference in the rR when RWH was higher than 30%.


2021 ◽  
Vol 42 (5) ◽  
Author(s):  
Christian W. Scholz ◽  
Roland Span

AbstractDensities in the homogeneous liquid phase of (mono-)ethanolamine (MEA) and diethanolamine (DEA) were investigated using a commercially available high-pressure vibrating-tube densimeter (VTD). Due to the melting point of the experimental materials, the setup of the VTD had to be modified by an insulated housing of the entire piping including the pressure pump. The insulated housing could be heated up by a temperature-controlled heating fan. The liquid samples with a purity of (0.9994 or 0.9950) mole fraction, respectively, were decanted within an inert protective argon atmosphere and further degassed by several freeze–pump–thaw cycles. Density measurements were carried out at temperatures between (293, respectively, 313 and 423) K and at pressures between (5 and 90) MPa. The resulting 140, respectively, 120 (p, ρ, T) data points, explicitly extend the published database for MEA and DEA, with regards to pressure. A comparison with the currently used equations of state for MEA and DEA revealed a maximum relative deviation of – 0.18 % for MEA and – 0.41 % for DEA, each at the highest investigated temperature and pressure. Considering the measurement uncertainties in temperature, pressure, and oscillation period, as well as uncertainties resulting from the calibration and from the impurities of the sample, the combined expanded relative uncertainty (k = 2) in density varied from (0.1027 to 0.1038) % and from (0.1104 to 0.1130) %, respectively. The VTD was previously calibrated by comprehensive measurements of water and helium and had been further validated by measurements with pure propane.


2020 ◽  
Vol 8 (2) ◽  
pp. 145
Author(s):  
Italon Rilson Vicente Gama ◽  
André Luiz Andrade Simões ◽  
Harry Edmar Schulz ◽  
Rodrigo De Melo Porto

<p>Ondas de cheia em canais e ondas produzidas por manobras em comportas são alguns fenômenos simulados com as equações de Saint-Venant em aplicações de engenharia. Um novo código foi desenvolvido para a solução dessas equações aplicadas a um canal trapezoidal assimétrico, empregando o método de volumes finitos de Lax e Friedrichs. Foi adotada uma linguagem de programação reconhecida por um <em>software</em> livre. Três testes numéricos foram realizados. O primeiro, correspondente à passagem de uma onda de cheia em um canal retangular, apresentou aderência aos resultados obtidos com a solução calculada através do método implícito de Preissmann, com desvio relativo máximo de 1,4% para a velocidade e de 0,81% para a altura de escoamento. O segundo teste resolveu o escoamento em um canal de fundo variado que induz à formação de um ressalto hidráulico. As comparações dos presentes resultados com aqueles de simulações publicadas recentemente resultaram em um desvio máximo de 2,3% para as alturas de escoamento, a montante e a jusante do ressalto hidráulico. Para as posições médias do ressalto hidráulico, o desvio foi de 2,4%. Na terceira comparação, simulou-se um ressalto hidráulico em um canal trapezoidal assimétrico de forte declividade, tendo sido encontrada uma solução com desvios relativos menores que 1% para os escoamentos a montante e a jusante do ressalto, quando comparados aos resultados calculados com o método de MacCormack. A posição média do ressalto nesta terceira comparação apresentou um desvio de 5,5% em relação aos resultados anteriores. Os desvios calculados indicam que o código desenvolvido é capaz de resolver escoamentos variáveis em canais com e sem a formação de ressaltos hidráulicos. Este é um resultado de cunho prático, pois mostra que códigos livres podem ser usados na prática da hidráulica em geometrias não-convencionais.</p><p> </p><p align="center">OPEN SOURCE FOR NUMERICAL SOLUTION OF SAINT-VENAN EQUATIONS IN ASYMMETRIC TRAPEZOIDAL OPEN-CHANNELS</p><p>Flood waves in channels, positive waves produced when operating floodgates, and the hydraulic jump are some phenomena simulated with the Saint-Venant equations in practical engineering applications. A new code was developed to solve these equations applied to an asymmetric trapezoidal channel using the Lax-Friedrichs finite volumes method. A programming language recognized by a free software was used. Three numerical tests were performed. The first, corresponding to the passage of a flood wave in a rectangular channel, showed adherence to results of the solution calculated using the Preissmann implicit method, presenting a maximum relative deviation of 1.4% for the speed and 0.81% for the flow height. The second test solved the flow in a channel with a variable bed that induces the formation of a hydraulic jump. Comparisons of the present results with those of recently published simulations produced a maximum deviation of 2.3% for the flow heights, upstream and downstream of the hydraulic jump. For the mean positions of the hydraulic jump the deviation was 2.4%. In the third comparison a hydraulic jump was simulated in an asymmetric trapezoidal channel with a strong slope, obtaining a solution with relative deviations less than 1% for flows upstream downstream of the jump, when compared to the results calculated with the MacCormack method. The average position of the jump in this third comparison showed a deviation of 5.5% in relation to the former results. The calculated deviations indicate that the developed code is capable of solving variable flows in channels with and without the formation of hydraulic jumps. This is a practical result, because it shows that open codes can be used in the practice of hydraulics in nonconventional geometries.</p>


2020 ◽  
Vol 61 (2) ◽  
pp. 305-314
Author(s):  
Zhuohuai Guan ◽  
Zhou Zhang ◽  
Tao Jiang ◽  
Ying Li ◽  
Chongyou Wu ◽  
...  

Aiming at real time rotation speed control of threshing drum and cleaning fan for combine harvester, a stepless speed regulation mechanism was developed. Test show that the adjustable range of fan was 600~1150 r/min, average adjustment speed was 9.2 r/s, the absolute error of stable speed was less than 0.72 r/min. The average speed response time was 1.33s, the overshoot was less than 8 r/s. The adjustable range of the drum was 700~1100 r/min and the average adjustment speed was 2.1 r/s. The absolute error of stable speed did not exceed 0.62 r/min, and the maximum relative deviation was 0.38%


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3052
Author(s):  
Piotr Życzkowski ◽  
Marek Borowski ◽  
Rafał Łuczak ◽  
Zbigniew Kuczera ◽  
Bogusław Ptaszyński

Legal requirements for the use of refrigerants increasingly restrict the use of high-global warming potential (GWP) refrigerants. As a result, there is a growing interest in natural refrigerants and in those belonging to the hydrofluoroolefins (HFO) class, which can be used on their own or in mixtures. One of them is the R1234ze(E) refrigerant, an alternative to the R134a refrigerant as well as being a component of numerous mixtures. The knowledge of thermodynamic and transport properties of refrigerants is required for the analysis and calculation of refrigeration cycles in refrigeration, air conditioning, or heating systems. The paper presents analytical equations for calculating the properties of the R1234ze(E) refrigerant in the state of saturation and in the subcooled liquid and superheated vapour regions that do not require numerical calculations and are characterised by small deviations. The Levenberg–Marquardt algorithm—one of the methods for non-linear least squares estimation—was used to develop them. A total of 26 equations were formulated. The formulated equations were statistically verified by determining absolute and relative deviations between the values obtained from CoolProp software and calculated values. The maximum relative deviation was not higher than 1% in any of them.


2020 ◽  
Vol 117 (3) ◽  
pp. 301
Author(s):  
Lian-Yun Jiang ◽  
Tao Zhen ◽  
Guo Yuan ◽  
Jin-Bo Huang ◽  
Yao-Yu Wei ◽  
...  

The grains in the center of the heavy steel plate can be refined by the snake/gradient temperature rolling, and the deformation penetration, the microstructure, and the properties of the steel plate will be improved. The existing rolling mechanical models are not suitable for the snake/gradient temperature rolling, so it is necessary to establish the mechanical parameters model of the snake/gradient temperature rolling to instruct production. The yield criterion of rolled material was modified based on the idea of equivalent flow stress. The element stress analyses were carried out based on the uniform normal stress and nonuniform shear stress in the vertical sides of each slab. Then the equilibrium equation of the unit pressure based on the slab method was established on this basis. The deformation region was divided into three layers (the top layer, the bottom layer, and the central layer) and maximum four zones (back slip zone, front slip zone, cross shear zone, and reverse deflection zone) according to the temperature distribution and position of the neutral point, and then the 12 zones were formed during the snake/gradient temperature rolling. The boundary conditions of the existence of the back slip zone, the front slip zone, and the cross shear zone were established according to the relationship between the threading angle and the neutral angle. The accurate mechanical parameters model of the rolling force and rolling torque of the snake/gradient temperature rolling with the same roll diameters was set up on this basis. The ANSYS software has been used in the rolling process simulation by many scholars, and the calculating precision has been verified. So the rolling processes were simulated by the ANSYS software to validate the model precision. The results show that the maximum relative deviation of the rolling force analytic model is less than 7% compared with the numerical method, and the maximum relative deviation of the rolling torque analytic model is less than 11% compared with the measured results. The mechanical parameters model can accurately predict the rolling force and rolling torque during the snake/gradient temperature rolling with the same roll diameters, so as to provide a theoretical basis for the design of rolling mill and the setup of the process parameters.


2020 ◽  
Vol 24 (3 Part B) ◽  
pp. 2067-2075 ◽  
Author(s):  
Peng Xu ◽  
Zhong-Liang Pan

This paper applies the multi-layer graphene nanoribbon as a new prospective filler material for through silicon via to solve the complex heat problems in the 3-D integrated circuits. An equivalent thermal model for 3-D integrated circuits with the MLGNR-based through silicon via is presented in this work, which take lateral heat transfer of through silicon via into account. The experimental results show that the heat transfer performance of MLGNR-based through silicon via is better than the conventional Cu-based through silicon via. Furthermore, it is found that the temperature predicted by the proposed model are in good accordance with the ANSYS simulation, and the maximum relative deviation is less than 4.0%


2020 ◽  
Vol 49 ◽  
pp. 96-110
Author(s):  
Konstantin Vladimirovich Khishchenko ◽  
◽  

An expression in a closed form is proposed for the approximation of the Debyefunction used in thermodynamic models of solids. This expression defines an analytic functionthat has the same limiting behavior as the Debye function at low and high temperatures. Theapproximation gives the maximum relative deviation from the value of the Debye function lessthan 0.001. The proposed expression can be useful in the equations of state of solids in a widetemperature range.


Sign in / Sign up

Export Citation Format

Share Document