minimum divergence
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 3)

H-INDEX

9
(FIVE YEARS 0)

Aerospace ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 276
Author(s):  
Victoria V. Svotina ◽  
Maria V. Cherkasova ◽  
Andrey I. Mogulkin ◽  
Andrey V. Melnikov ◽  
Oleg D. Peysakhovich

To develop elements of a system for contact-free transportation of objects in space has now become an urgent task for the contemporary space-related activities. The purpose of work that is presented hereinafter was to conduct ground tests of the ion source, which is a key element of the above-mentioned system, and to compare the obtained experimental data with the mathematical simulation results in order to build a refined physical and mathematical model of the ion source. Such model was built on the basis of the classical problem regarding the motion of charged particles in an electrostatic field. Parameters of the ion source have been determined experimentally for several operating modes using various structural designs of the ion source electrodes. Two types of ion optics were tested—with slit and round apertures. Good correlation between simulation results and experimental data has been demonstrated. The optimum ion source operation modes have been identified to ensure minimum divergence angles for the plasma beam exiting from the ion source, which in its turn maximizes the pulse transmitted to the transported object.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 185
Author(s):  
Michel Broniatowski

This paper states that most commonly used minimum divergence estimators are MLEs for suited generalized bootstrapped sampling schemes. Optimality in the sense of Bahadur for associated tests of fit under such sampling is considered.


2020 ◽  
Vol 287 (1928) ◽  
pp. 20200943
Author(s):  
Benedict King ◽  
Robin M. D. Beck

The estimation of the timing of major divergences in early mammal evolution is challenging owing to conflicting interpretations of key fossil taxa. One contentious group is Haramiyida, the earliest members of which are from the Late Triassic. Many phylogenetic analyses have placed haramiyidans in a clade with multituberculates within crown Mammalia, thus extending the minimum divergence date for the crown group deep into the Triassic. A second taxon of interest is the eutherian Juramaia from the Middle–Late Jurassic Yanliao Biota, which is morphologically very similar to eutherians from the Early Cretaceous Jehol Biota and implies a very early origin for therian mammals. Here, we apply Bayesian tip-dated phylogenetic methods to investigate these issues. Tip dating firmly rejects a monophyletic Allotheria (multituberculates and haramiyidans), which are split into three separate clades, a result not found in any previous analysis. Most notably, the Late Triassic Haramiyavia and Thomasia are separate from the Middle Jurassic euharamiyidans. We also test whether the Middle–Late Jurassic age of Juramaia is ‘expected’ given its known morphology by assigning an age prior without hard bounds. Strikingly, this analysis supports an Early Cretaceous age for Juramaia , but similar analyses on 12 other mammaliaforms from the Yanliao Biota return the correct, Jurassic age. Our results show that analyses incorporating stratigraphic data can produce results very different from other methods. Early mammal evolution may have involved multiple instances of convergent morphological evolution (e.g. in the dentition), and tip dating may be a method uniquely suitable to recognizing this owing to the incorporation of stratigraphic data. Our results also confirm that Juramaia is anomalous in exhibiting a much more derived morphology than expected given its age, which in turn implies very high rates of evolution at the base of therian mammals.


2018 ◽  
Vol 19 (10) ◽  
pp. 1651-1670 ◽  
Author(s):  
Michael Scheuerer ◽  
Thomas M. Hamill

Abstract Enhancements of multivariate postprocessing approaches are presented that generate statistically calibrated ensembles of high-resolution precipitation forecast fields with physically realistic spatial and temporal structures based on precipitation forecasts from the Global Ensemble Forecast System (GEFS). Calibrated marginal distributions are obtained with a heteroscedastic regression approach using censored, shifted gamma distributions. To generate spatiotemporal forecast fields, a new variant of the recently proposed minimum divergence Schaake shuffle technique, which selects a set of historic dates in such a way that the associated analysis fields have marginal distributions that resemble the calibrated forecast distributions, is proposed. This variant performs univariate postprocessing at the forecast grid scale and disaggregates these coarse-scale precipitation amounts to the analysis grid by deriving a multiplicative adjustment function and using it to modify the historic analysis fields such that they match the calibrated coarse-scale precipitation forecasts. In addition, an extension of the ensemble copula coupling (ECC) technique is proposed. A mapping function is constructed that maps each raw ensemble forecast field to a high-resolution forecast field such that the resulting downscaled ensemble has the prescribed marginal distributions. A case study over an area that covers the Russian River watershed in California is presented, which shows that the forecast fields generated by the two new techniques have a physically realistic spatial structure. Quantitative verification shows that they also represent the distribution of subgrid-scale precipitation amounts better than the forecast fields generated by the standard Schaake shuffle or the ECC-Q reordering approaches.


2017 ◽  
Vol 114 (30) ◽  
pp. 8047-8052 ◽  
Author(s):  
Daniel T. Ksepka ◽  
Thomas A. Stidham ◽  
Thomas E. Williamson

Evidence is accumulating for a rapid diversification of birds following the K–Pg extinction. Recent molecular divergence dating studies suggest that birds radiated explosively during the first few million years of the Paleocene; however, fossils from this interval remain poorly represented, hindering our understanding of morphological and ecological specialization in early neoavian birds. Here we report a small fossil bird from the Nacimiento Formation of New Mexico, constrained to 62.221–62.517 Ma. This partial skeleton represents the oldest arboreal crown group bird known. Phylogenetic analyses recoveredTsidiiyazhi abinigen. et sp. nov. as a member of the Sandcoleidae, an extinct basal clade of stem mousebirds (Coliiformes). The discovery ofTsidiiyazhipushes the minimum divergence ages of as many as nine additional major neoavian lineages into the earliest Paleocene, compressing the duration of the proposed explosive post–K–Pg radiation of modern birds into a very narrow temporal window parallel to that suggested for placental mammals. Simultaneously,Tsidiiyazhiprovides evidence for the rapid morphological (and likely ecological) diversification of crown birds. Features of the foot indicate semizygodactyly (the ability to facultatively reverse the fourth pedal digit), and the arcuate arrangement of the pedal trochleae bears a striking resemblance to the conformation in owls (Strigiformes). Inclusion of fossil taxa and branch length estimates impacts ancestral state reconstructions, revealing support for the independent evolution of semizygodactyly in Coliiformes, Leptosomiformes, and Strigiformes, none of which is closely related to extant clades exhibiting full zygodactyly.


2017 ◽  
Author(s):  
Diaa Al Mohamad ◽  
◽  
Michel Broniatowski ◽  

2016 ◽  
Vol 95 ◽  
pp. 29-45 ◽  
Author(s):  
Rodolfo A. Victor ◽  
Maryam Mirabolghasemi ◽  
Steven L. Bryant ◽  
Maša Prodanović

Sign in / Sign up

Export Citation Format

Share Document