high normal stress
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 1)

H-INDEX

7
(FIVE YEARS 1)

2020 ◽  
Vol 132 (9-10) ◽  
pp. 2084-2104 ◽  
Author(s):  
John M. Fletcher ◽  
Orlando J. Teran ◽  
Thomas K. Rockwell ◽  
Michael E. Oskin ◽  
Kenneth W. Hudnut ◽  
...  

Abstract The moment magnitude 7.2 El Mayor–Cucapah (EMC) earthquake of 2010 in northern Baja California, Mexico produced a cascading rupture that propagated through a geometrically diverse network of intersecting faults. These faults have been exhumed from depths of 6–10 km since the late Miocene based on low-temperature thermochronology, synkinematic alteration, and deformational fabrics. Coseismic slip of 1–6 m of the EMC event was accommodated by fault zones that displayed the full spectrum of architectural styles, from simple narrow fault zones (< 100 m in width) that have a single high-strain core, to complex wide fault zones (> 100 m in width) that have multiple anastomosing high-strain cores. As fault zone complexity and width increase the full spectrum of observed widths (20–200 m), coseismic slip becomes more broadly distributed on a greater number of scarps that form wider arrays. Thus, the infinitesimal slip of the surface rupture of a single earthquake strongly replicates many of the fabric elements that were developed during the long-term history of slip on the faults at deeper levels of the seismogenic crust. We find that factors such as protolith, normal stress, and displacement, which control gouge production in laboratory experiments, also affect the architectural complexity of natural faults. Fault zones developed in phyllosilicate-rich metasedimentary gneiss are generally wider and more complex than those developed in quartzo-feldspathic granitoid rocks. We hypothesize that the overall weakness and low strength contrast of faults developed in phyllosilicate rich host rocks leads to strain hardening and formation of broad, multi-stranded fault zones. Fault orientation also strongly affects fault zone complexity, which we find to increase with decreasing fault dip. We attribute this to the higher resolved normal stresses on gently dipping faults assuming a uniform stress field compatible with this extensional tectonic setting. The conditions that permit slip on misoriented surfaces with high normal stress should also produce failure of more optimally oriented slip systems in the fault zone, promoting complex branching and development of multiple high-strain cores. Overall, we find that fault zone architecture need not be strongly affected by differences in the amount of cumulative slip and instead is more strongly controlled by protolith and relative normal stress.


2017 ◽  
Vol 741 ◽  
pp. 76-81 ◽  
Author(s):  
Wei Bo Li ◽  
Osamu Umezawa

The characterization of subsurface fatigue crack initiate sites of near α and α-β types titanium alloys and their cracking models proposed were reviewed. The crack initiation sites consisted of facets mostly on near basal plane of α grain, although the crystallographic orientation and surface topography of the facets presented a subtle difference. The crack initiation mechanisms were a quasi-cleavage accompanying high normal stress on the plane, a combination of basal slip and normal stress across the basal plane, and a pure slip on facet plane inclined near 45 degree to loading axis.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Fengshou Zhang ◽  
Yi Fang ◽  
Derek Elsworth ◽  
Chaoyi Wang ◽  
Xiaofeng Yang

We explore the evolution of friction and permeability of a propped fracture under shear. We examine the effects of normal stress, proppant thickness, proppant size, and fracture wall texture on the frictional and transport response of proppant packs confined between planar fracture surfaces. The proppant-absent and proppant-filled fractures show different frictional strength. For fractures with proppants, the frictional response is mainly controlled by the normal stress and proppant thickness. The depth of shearing-concurrent striations on fracture surfaces suggests that the magnitude of proppant embedment is controlled by the applied normal stress. Under high normal stress, the reduced friction implies that shear slip is more likely to occur on propped fractures in deeper reservoirs. The increase in the number of proppant layers, from monolayer to triple layers, significantly increases the friction of the propped fracture due to the interlocking of the particles and jamming. Permeability of the propped fracture is mainly controlled by the magnitude of the normal stress, the proppant thickness, and the proppant grain size. Permeability of the propped fracture decreases during shearing due to proppant particle crushing and related clogging. Proppants are prone to crushing if the shear loading evolves concurrently with the normal loading.


2016 ◽  
Vol 142 (5) ◽  
pp. 04016005 ◽  
Author(s):  
Stuart S. Thielmann ◽  
Patrick J. Fox ◽  
Chris Athanassopoulos

2016 ◽  
Vol 205 (1) ◽  
pp. 548-561 ◽  
Author(s):  
B.M. Carpenter ◽  
C. Collettini ◽  
C. Viti ◽  
A. Cavallo

Abstract The presence of calcite in and near faults, as the dominant material, cement, or vein fill, indicates that the mechanical behaviour of carbonate-dominated material likely plays an important role in shallow- and mid-crustal faulting. To better understand the behaviour of calcite, under loading conditions relevant to earthquake nucleation, we sheared powdered gouge of Carrara Marble, >98 per cent CaCO3, at constant normal stresses between 1 and 100 MPa under water-saturated conditions at room temperature. We performed slide-hold-slide tests, 1–3000 s, to measure the amount of static frictional strengthening and creep relaxation, and velocity-stepping tests, 0.1–1000 μm s–1, to evaluate frictional stability. We observe that the rates of frictional strengthening and creep relaxation decrease with increasing normal stress and diverge as shear velocity is increased from 1 to 3000 μm s–1 during slide-hold-slide experiments. We also observe complex frictional stability behaviour that depends on both normal stress and shearing velocity. At normal stresses less than 20 MPa, we observe predominantly velocity-neutral friction behaviour. Above 20 MPa, we observe strong velocity-strengthening frictional behaviour at low velocities, which then evolves towards velocity-weakening friction behaviour at high velocities. Microstructural analyses of recovered samples highlight a variety of deformation mechanisms including grain size reduction and localization, folding of calcite grains and fluid-assisted diffusion mass transfer processes promoting the development of calcite nanograins in the highly deformed portions of the experimental fault. Our combined analyses indicate that calcite fault gouge transitions from brittle to semi-brittle behaviour at high normal stress and slow sliding velocities. This transition has important implications for earthquake nucleation and propagation on faults in carbonate-dominated lithologies.


2014 ◽  
Vol 638-640 ◽  
pp. 427-432
Author(s):  
Zon Yee Yang ◽  
Wei Chieh Chiu

The shear strength of rock joints is highly depended upon the failure mode of joint asperity. At lower normal stress slide-up of one asperity up over another mode, however at high normal stress the joint asperities are sheared off at the base. This research uses pressure measurement film to directly measure the contact normal stress between smooth joint surfaces. It demonstrates that the density of color impression is capable of capturing the normal stress distribution behavior. The contact normal stress distribution during shearing is changed. After shearing, the contact stress becomes large. This increase in contact normal stress is to fracture the joint wall material.


2011 ◽  
Vol 122 (1-2) ◽  
pp. 93-105 ◽  
Author(s):  
Cheng-Jie Liao ◽  
Der-Her Lee ◽  
Jian-Hong Wu ◽  
Chia-Ze Lai

Sign in / Sign up

Export Citation Format

Share Document