adiabatic term
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

MAUSAM ◽  
2021 ◽  
Vol 71 (2) ◽  
pp. 255-274
Author(s):  
AL-MUTAIRI M K ◽  
BASSET H ABDEL

On 16-17 November, 2015, north and middle regions of Saudi Arabia were hit by a case of cyclogenesisassociated with heavy rainfall. This work presents a diagnostic study of this heavy rainfallcase based on the analysis of diabatic heating and potential vorticity. The synoptic analysis investigate that the important dynamical factors that causes this case are the northward extension of Red Sea Trough, anticyclone over the Arabian Peninsula, a travailing midlatitude upper trough, moisture transport pathways and strong upward motion arising from tropospheric instability. The calculation of diabatic heating by the thermodynamic equation illustrate that the contribution of vertical temperature advection and the adiabatic term are opposite to each other during the period of study. The largest contribution of the horizontal cold advection occurs during the first two days while the largest contribution of the horizontal warm advection occurs during the maximum development days. The dynamics of the studied case are also investigated in terms of isobaric Potential Vorticity. It is found that the location of the low-level Potential Vorticity anomaly and the Potential Vorticity generation estimates coincides with the heating region, which implies that condensation supports a large enough source to explain the existence of the low-level Potential Vorticity anomaly.


2018 ◽  
Vol 75 (6) ◽  
pp. 1833-1852 ◽  
Author(s):  
Lina Boljka ◽  
Theodore G. Shepherd

Abstract Multiscale asymptotic methods are used to derive wave activity equations for planetary- and synoptic-scale eddies and their interactions with a zonal mean flow. The eddies are assumed to be of small amplitude, and the synoptic-scale zonal and meridional length scales are taken to be equal. Under these assumptions, the zonal-mean and planetary-scale dynamics are planetary geostrophic (i.e., dominated by vortex stretching), and the interaction between planetary- and synoptic-scale eddies occurs only through the zonal mean flow or through diabatic processes. Planetary-scale heat fluxes are shown to enter the angular momentum budget through meridional mass redistribution. After averaging over synoptic length and time scales, momentum fluxes disappear from the synoptic-scale wave activity equation while synoptic-scale heat fluxes disappear from the baroclinicity equation, leaving planetary-scale heat fluxes as the only adiabatic term coupling the baroclinic and barotropic components of the zonal mean flow. In the special case of weak planetary waves, the decoupling between the baroclinic and barotropic parts of the flow is complete with momentum fluxes driving the barotropic zonal mean flow, heat fluxes driving the wave activity, and diabatic processes driving baroclinicity. These results help explain the apparent decoupling between the baroclinic and barotropic components of flow variability recently identified in observations and may provide a means of better understanding the link between thermodynamic and dynamic aspects of climate variability and change.


2014 ◽  
Vol 71 (9) ◽  
pp. 3109-3128 ◽  
Author(s):  
Roohollah Azad ◽  
Asgeir Sorteberg

Abstract This series of papers (parts I and II) examines the vorticity budgets of winter North Atlantic extratropical cyclones during the period 1979–2009 using the Modern-Era Retrospective Analysis for Research and Application (MERRA). The authors use a new partitioning technique to combine the Zwack–Okossi (Z–O) equation with the omega equation. The combination provides a possibility to partition the adiabatic term in the Z–O equation into its different forcing mechanisms. Thus, both the direct effect of the dynamic and thermodynamic forcings and their indirect effect on the adiabatic term can be calculated to provide the total effect (direct plus indirect) on the 950-hPa geostrophic vorticity tendency. It is demonstrated that the total-effect diagnostic is a suitable tool to identify the dynamically consistent characteristics of cyclone development in midlatitudes because it possesses less case-to-case variability. The authors found that the vorticity advection is the major forcing process, the tendencies attributed to the ageostrophic vorticity tendency term are considerable, and the opposing effect of the friction term in moderating the deepening is significant. In general, the upper-level dynamics drive the deepening of the cyclones, except at the end of development, where a combination of midlevel latent heating, positive ageostrophic vorticity tendency, and positive indirect effect of vorticity advection contribute to the development. Additionally, the total effects of temperature advection and latent heating on the intensification of cyclones are reduced because of the inclusion of counteractive indirect effects, as are their variabilities within the cyclone composite.


Sign in / Sign up

Export Citation Format

Share Document