scholarly journals Diagnostic study of diabatic heating and potential vorticity during a case of cyclogenesis

MAUSAM ◽  
2021 ◽  
Vol 71 (2) ◽  
pp. 255-274
Author(s):  
AL-MUTAIRI M K ◽  
BASSET H ABDEL

On 16-17 November, 2015, north and middle regions of Saudi Arabia were hit by a case of cyclogenesisassociated with heavy rainfall. This work presents a diagnostic study of this heavy rainfallcase based on the analysis of diabatic heating and potential vorticity. The synoptic analysis investigate that the important dynamical factors that causes this case are the northward extension of Red Sea Trough, anticyclone over the Arabian Peninsula, a travailing midlatitude upper trough, moisture transport pathways and strong upward motion arising from tropospheric instability. The calculation of diabatic heating by the thermodynamic equation illustrate that the contribution of vertical temperature advection and the adiabatic term are opposite to each other during the period of study. The largest contribution of the horizontal cold advection occurs during the first two days while the largest contribution of the horizontal warm advection occurs during the maximum development days. The dynamics of the studied case are also investigated in terms of isobaric Potential Vorticity. It is found that the location of the low-level Potential Vorticity anomaly and the Potential Vorticity generation estimates coincides with the heating region, which implies that condensation supports a large enough source to explain the existence of the low-level Potential Vorticity anomaly.

2021 ◽  
Author(s):  
Edgar Dolores-Tesillos ◽  
Franziska Teubler ◽  
Stephan Pfahl

Abstract. Strong low-level winds associated with extratropical cyclones can cause substantial impacts on society. The wind intensity and the spatial distribution of wind maxima may change in a warming climate; however, the involved changes in cyclone structure and dynamics are unclear. Here, such structural changes of strong North Atlantic cyclones in a warmer climate close to the end of the current century are investigated with storm-relative composites based on Community Earth System Model Large Ensemble (CESM-LENS) simulations. Furthermore, a piecewise potential vorticity inversion is applied to associate such changes in low-level winds to changes in potential vorticity (PV) anomalies at different levels. Projected changes in cyclone intensity are generally rather small. However, using cyclone-relative composites, we identify an extended wind footprint southeast of the center of strong cyclones, where the wind speed tends to intensify in a warmer climate. Both an amplified low-level PV anomaly driven by enhanced diabatic heating and a dipole change in upper-level PV anomalies contribute to this wind intensification. On the contrary, wind changes associated with lower- and upper-level PV anomalies mostly compensate each other upstream of the cyclone center. Wind changes at upper levels are dominated by changes in upper-level PV anomalies and the background flow. All together, our results indicate that a complex interaction of enhanced diabatic heating and altered non-linear upper-tropospheric wave dynamics shape future changes in near-surface winds in North Atlantic cyclones.


2009 ◽  
Vol 9 (19) ◽  
pp. 7591-7605 ◽  
Author(s):  
R. J. Conzemius ◽  
M. T. Montgomery

Abstract. In this paper, we clarify several outstanding issues concerning the predominant mechanism of vorticity generation in mesoscale convective vortices (MCVs) in weak to modest baroclinic environments with nonzero Coriolis parameter. We examine also the corresponding diabatic heating profiles of the convective and stratiform components of the MCS and their effects on the concentration and dilution of PV substance.


2019 ◽  
Vol 76 (9) ◽  
pp. 2701-2714 ◽  
Author(s):  
Kristine F. Haualand ◽  
Thomas Spengler

Abstract Latent cooling by evaporating or melting hydrometeors has recently been shown to contribute to the positive low-level potential vorticity (PV) anomaly below the layer of latent heating in midlatitude cyclones. While the low-level PV anomaly might be intensified by latent cooling, the influence on the overall baroclinic development remains unclear. Including both latent heating and cooling in the Eady model, this study finds that latent cooling reduces baroclinic growth. While the PV anomaly between the layers of latent cooling and heating increases for realistic heating intensities, the PV anomaly at the top of the heating layer decreases, as latent heating is weakened because of reduced vertical motion within the cyclone. Consequently, the relative contribution from diabatic heating to the generation of eddy available potential energy decreases when latent cooling is included. Thus, despite the recently emphasized role of evaporation for the low-level PV anomaly in developing cyclones, the overall effect of latent cooling is detrimental to baroclinic growth.


2012 ◽  
Vol 140 (6) ◽  
pp. 1748-1760 ◽  
Author(s):  
Kyong-Hwan Seo ◽  
Eun-Ji Song

Abstract Potential vorticity (PV) thinking conceptually connects the upper-level (upper troposphere in the extratropics and middle troposphere for the tropics) dynamical process to the lower-level process. Here, the initiation mechanism of the boreal summer intraseasonal oscillation (BSISO) in the tropics is investigated using PV thinking. The authors demonstrate that the midtropospheric PV anomaly produces a dynamical environment favorable for the BSISO initiation. Under seasonal easterly vertical wind shear, the PV anomaly enhances low-level convergence and upward motion at its western edge. Tropical PV forcing in the middle troposphere produces balanced mass and circulation fields that spread horizontally and vertically so that its effect can reach even the lowest troposphere. The downward influence of the midtropospheric PV forcing is one of the key aspects of the PV thinking. Direct piecewise PV inversions confirm that the anomalous lower-level zonal wind and its convergence necessary for the initiation of BSISO convection do not arise solely from the response to the lower-level PV forcing but from the summed contribution by PV forcing at all levels. About 50% of the low-level circulation variations result from PV forcing from 700 to 450 hPa, with the largest contribution from the 600–650-hPa PV anomalies for the convection initiation region over the western Indian Ocean. The current study is compared with and incorporated into the thermodynamic recharge process and the frictional moisture flux convergence mechanism for the BSISO initiation. This study is the first qualitative application of the PV thinking approach that reveals the BSISO dynamics.


Author(s):  
Gilles Bellon ◽  
Beatriz Reboredo

Abstract We investigate the steady dynamical response of the atmosphere on the equatorial β-plane to a steady, localized, mid-tropospheric heating source. Following Part I which investigates the case of an equatorial diabatic heating, we explore the sensitivity of the Gill circulation to the latitudinal location of the heating, together with the sensitivity to its horizontal scale. Again, we focus on characteristics of the response which would be particularly important if the circulation interacted with the hydrologic and energy cycles: overturning circulation and low-level wind. In the off-equatorial case, the intensity of the overturning circulation has the same limit as in the equatorial case for small horizontal extent of the diabatic heating, which is also the limit in the f-plane case. The decrease in this intensity with increasing horizontal scale of the diabatic heating is slightly faster in the off-equatorial case than in the equatorial case, which is due to the increase of rotational winds at the expense of divergent winds. The low-level westerly jet is more intense than in the equatorial case, with larger maximum wind and eastward mass transport that tend to infinity for small horizontal extent of the diabatic heating. In terms of spatial characteristics, this jet has a similar latitudinal extent as in the equatorial case but, unlike in the equatorial case, it extends further equatorward than poleward of the diabatic-heating center. It also extends further eastward than in the equatorial case.


Sign in / Sign up

Export Citation Format

Share Document