scholarly journals Multi-Hop Fact Checking of Political Claims

Author(s):  
Wojciech Ostrowski ◽  
Arnav Arora ◽  
Pepa Atanasova ◽  
Isabelle Augenstein

Recent work has proposed multi-hop models and datasets for studying complex natural language reasoning. One notable task requiring multi-hop reasoning is fact checking, where a set of connected evidence pieces leads to the final verdict of a claim. However, existing datasets either do not provide annotations for gold evidence pages, or the only dataset which does (FEVER) mostly consists of claims which can be fact-checked with simple reasoning and is constructed artificially. Here, we study more complex claim verification of naturally occurring claims with multiple hops over interconnected evidence chunks. We: 1) construct a small annotated dataset, PolitiHop, of evidence sentences for claim verification; 2) compare it to existing multi-hop datasets; and 3) study how to transfer knowledge from more extensive in- and out-of-domain resources to PolitiHop. We find that the task is complex and achieve the best performance with an architecture that specifically models reasoning over evidence pieces in combination with in-domain transfer learning.

Author(s):  
Shu Jiang ◽  
Zuchao Li ◽  
Hai Zhao ◽  
Bao-Liang Lu ◽  
Rui Wang

In recent years, the research on dependency parsing focuses on improving the accuracy of the domain-specific (in-domain) test datasets and has made remarkable progress. However, there are innumerable scenarios in the real world that are not covered by the dataset, namely, the out-of-domain dataset. As a result, parsers that perform well on the in-domain data usually suffer from significant performance degradation on the out-of-domain data. Therefore, to adapt the existing in-domain parsers with high performance to a new domain scenario, cross-domain transfer learning methods are essential to solve the domain problem in parsing. This paper examines two scenarios for cross-domain transfer learning: semi-supervised and unsupervised cross-domain transfer learning. Specifically, we adopt a pre-trained language model BERT for training on the source domain (in-domain) data at the subword level and introduce self-training methods varied from tri-training for these two scenarios. The evaluation results on the NLPCC-2019 shared task and universal dependency parsing task indicate the effectiveness of the adopted approaches on cross-domain transfer learning and show the potential of self-learning to cross-lingual transfer learning.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 445 ◽  
Author(s):  
Laith Alzubaidi ◽  
Omran Al-Shamma ◽  
Mohammed A. Fadhel ◽  
Laith Farhan ◽  
Jinglan Zhang ◽  
...  

Breast cancer is a significant factor in female mortality. An early cancer diagnosis leads to a reduction in the breast cancer death rate. With the help of a computer-aided diagnosis system, the efficiency increased, and the cost was reduced for the cancer diagnosis. Traditional breast cancer classification techniques are based on handcrafted features techniques, and their performance relies upon the chosen features. They also are very sensitive to different sizes and complex shapes. However, histopathological breast cancer images are very complex in shape. Currently, deep learning models have become an alternative solution for diagnosis, and have overcome the drawbacks of classical classification techniques. Although deep learning has performed well in various tasks of computer vision and pattern recognition, it still has some challenges. One of the main challenges is the lack of training data. To address this challenge and optimize the performance, we have utilized a transfer learning technique which is where the deep learning models train on a task, and then fine-tune the models for another task. We have employed transfer learning in two ways: Training our proposed model first on the same domain dataset, then on the target dataset, and training our model on a different domain dataset, then on the target dataset. We have empirically proven that the same domain transfer learning optimized the performance. Our hybrid model of parallel convolutional layers and residual links is utilized to classify hematoxylin–eosin-stained breast biopsy images into four classes: invasive carcinoma, in-situ carcinoma, benign tumor and normal tissue. To reduce the effect of overfitting, we have augmented the images with different image processing techniques. The proposed model achieved state-of-the-art performance, and it outperformed the latest methods by achieving a patch-wise classification accuracy of 90.5%, and an image-wise classification accuracy of 97.4% on the validation set. Moreover, we have achieved an image-wise classification accuracy of 96.1% on the test set of the microscopy ICIAR-2018 dataset.


2020 ◽  
Vol 5 (3) ◽  
pp. 4148-4155
Author(s):  
Dandan Zhang ◽  
Zicong Wu ◽  
Junhong Chen ◽  
Anzhu Gao ◽  
Xu Chen ◽  
...  

2020 ◽  
Vol 10 (6) ◽  
pp. 2021 ◽  
Author(s):  
Ibrahem Kandel ◽  
Mauro Castelli

Diabetic retinopathy (DR) is a dangerous eye condition that affects diabetic patients. Without early detection, it can affect the retina and may eventually cause permanent blindness. The early diagnosis of DR is crucial for its treatment. However, the diagnosis of DR is a very difficult process that requires an experienced ophthalmologist. A breakthrough in the field of artificial intelligence called deep learning can help in giving the ophthalmologist a second opinion regarding the classification of the DR by using an autonomous classifier. To accurately train a deep learning model to classify DR, an enormous number of images is required, and this is an important limitation in the DR domain. Transfer learning is a technique that can help in overcoming the scarcity of images. The main idea that is exploited by transfer learning is that a deep learning architecture, previously trained on non-medical images, can be fine-tuned to suit the DR dataset. This paper reviews research papers that focus on DR classification by using transfer learning to present the best existing methods to address this problem. This review can help future researchers to find out existing transfer learning methods to address the DR classification task and to show their differences in terms of performance.


Sign in / Sign up

Export Citation Format

Share Document