local and systemic resistance
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 0)

H-INDEX

10
(FIVE YEARS 0)

2017 ◽  
Vol 45 (1) ◽  
pp. 270-275 ◽  
Author(s):  
Zoltán Á. NAGY ◽  
András JUNG ◽  
Zsófia VARGA ◽  
György KÁTAY ◽  
Attila L. ÁDÁM

Systemic acquired resistance (SAR) is effectively inducible in greenhouse and certain artificial light sources cause non-optimal growth of tobacco plants. Therefore, the morphological characteristics, local and systemic resistance response of N. tabacum cv. ‘Xanthi’ nc plants (harbouring NN resistance genes) to tobacco mosaic virus (TMV) infection under three artificial light sources with different spectral distribution were compared with greenhouse conditions. Statistical analysis of data was carried out by R package (R Core Team, 2015). Generally, artificial light sources (especially fluorescent tube, and halogen lamp) decreased the local resistance response and caused substantial morphological and developmental differences as compared to greenhouse conditions when plants were kept during their entire life (lifelong experimental regime) under these conditions. On the contrary, no or much less differences were found when plants were transferred from greenhouse to artificial light sources only at six leaf stage (short experimental regime). While induction of systemic acquired resistance (SAR) frequently decreased TMV lesion size by about 50-60% under greenhouse conditions, two of the three artificial light sources, fluorescent tube and halogen lamp were substantially and significantly less effective under short experimental regime conditions (25-35%). A metal halide light source with similarity to sunshine’s spectral distribution, however, partially mimicked the effect of greenhouse conditions indicating the importance of light spectrum among other factors in SAR induction and prevention of distorted growth of plants. Consequently, the optimization of the effect of artificial light sources is an important factor in experimental design studying signal transduction and biochemistry of SAR.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Vívian de Jesus Miranda ◽  
William Farias Porto ◽  
Gabriel da Rocha Fernandes ◽  
Robert Pogue ◽  
Diego Oliveira Nolasco ◽  
...  

2011 ◽  
Vol 101 (7) ◽  
pp. 768-777 ◽  
Author(s):  
Bas Verhagen ◽  
Patricia Trotel-Aziz ◽  
Philippe Jeandet ◽  
Fabienne Baillieul ◽  
Aziz Aziz

Bacteria such as Pantoea agglomerans (Pa-AF2), Bacillus subtilis (Bs-271), Acinetobacter lwoffii (Al-113), and Pseudomonas fluorescens (Pf-CT2), originating from the vineyard, can induce defense responses and enhance resistance of grapevine against the fungal pathogen Botrytis cinerea. The perception of these bacteria by plant cells or tissues in relation to their activities remains unknown. In this study, we examined the relationships between the activity of each bacterium to induce or prime some defense responses, and its effectiveness to induce resistance in grapevine against B. cinerea. We showed that all selected bacteria are capable of inducing early oxidative burst and phytoalexin (trans-resveratrol and trans-ε-viniferin) production in grapevine cells and leaves. Pf-CT2 and Al-113 induced higher H2O2 and trans-resveratrol accumulations, and were able to further prime plants for accelerated phytoalexin production after B. cinerea challenge. These two bacteria were also the most effective in inducing local and systemic resistance. A similar level of induced resistance was observed with live Pa-AF2 which also induced but not primed a greater accumulation of trans-resveratrol. However, Bs-271, which was less effective in inducing resistance, induced a lower trans-resveratrol synthesis, without priming activity. Treatment of grapevine cells with growing medium or crude extract of the bacteria quickly and strongly enhanced oxidative burst compared with the live bacteria. However, both treatments resulted in comparable amounts of phytoalexins and induced local and systemic resistance to B. cinerea as compared with those induced by living bacteria, with extracts from Pf-CT2 and Al-113 being the most effective. Together, these results indicate that induced resistance can be improved by treatment with bacteria or derived compounds which induced or primed plants for enhanced phytoalexin accumulation.


2005 ◽  
Vol 66 (5) ◽  
pp. 163-174 ◽  
Author(s):  
Nektarios Kavroulakis ◽  
Constantinos Ehaliotis ◽  
Spyridon Ntougias ◽  
Georgios I. Zervakis ◽  
Kalliope K. Papadopoulou

2003 ◽  
Vol 16 (2) ◽  
pp. 115-122 ◽  
Author(s):  
Olivier Klarzynski ◽  
Valérie Descamps ◽  
Bertrand Plesse ◽  
Jean-Claude Yvin ◽  
Bernard Kloareg ◽  
...  

Sulfated fucans are common structural components of the cell walls of marine brown algae. Using a fucan-degrading hydrolase isolated from a marine bacterium, we prepared sulfated fucan oligosaccharides made of mono- and disulfated fucose units alternatively bound by α-1,4 and α-1,3 glycosidic linkages, respectively. Here, we report on the elicitor activity of such fucan oligosaccharide preparations in tobacco. In suspension cell cultures, oligofucans at the dose of 200 μg ml−1 rapidly induced a marked alkalinization of the extracellular medium and the release of hydrogen peroxide. This was followed within a few hours by a strong stimulation of phenylalanine ammonia-lyase and lipoxygenase activities. Tobacco leaves treated with oligofucans locally accumulated salicylic acid (SA) and the phytoalexin scopoletin and expressed several pathogenesis-related (PR) proteins, but they displayed no symptoms of cell death. Fucan oligosaccharides also induced the systemic accumulation of SA and the acidic PR protein PR-1, two markers of systemic acquired resistance (SAR). Consistently, fucan oligosaccharides strongly stimulated both local and systemic resistance to tobacco mosaic virus (TMV). The use of transgenic plants unable to accumulate SA indicated that, as in the SAR primed by TMV, SA is required for the establishment of oligofucan-induced resistance.


Sign in / Sign up

Export Citation Format

Share Document