Local and systemic resistance against fungal pathogens of tomato plants elicited by a compost derived from agricultural residues

2005 ◽  
Vol 66 (5) ◽  
pp. 163-174 ◽  
Author(s):  
Nektarios Kavroulakis ◽  
Constantinos Ehaliotis ◽  
Spyridon Ntougias ◽  
Georgios I. Zervakis ◽  
Kalliope K. Papadopoulou
Author(s):  
Maria-Dimitra Tsolakidou ◽  
Ioannis A Stringlis ◽  
Natalia Fanega-Sleziak ◽  
Stella Papageorgiou ◽  
Antria Tsalakou ◽  
...  

Abstract Composts represent a sustainable way to suppress diseases and improve plant growth. Identification of compost-derived microbial communities enriched in the rhizosphere of plants and characterization of their traits, could facilitate the design of microbial synthetic communities (SynComs) that upon soil inoculation could yield consistent beneficial effects towards plants. Here, we characterized a collection of compost-derived bacteria, previously isolated from tomato rhizosphere, for in vitro antifungal activity against soil-borne fungal pathogens and for their potential to change growth parameters in Arabidopsis. We further assessed root-competitive traits in the dominant rhizospheric genus Bacillus. Certain isolated rhizobacteria displayed antifungal activity against the tested pathogens and affected growth of Arabidopsis, and Bacilli members possessed several enzymatic activities. Subsequently, we designed two SynComs with different composition and tested their effect on Arabidopsis and tomato growth and health. SynCom1, consisting of different bacterial genera, displayed negative effect on Arabidopsis in vitro, but promoted tomato growth in pots. SynCom2, consisting of Bacilli, didn't affect Arabidopsis growth, enhanced tomato growth and suppressed Fusarium wilt symptoms. Overall, we found selection of compost-derived microbes with beneficial properties in the rhizosphere of tomato plants, and observed that application of SynComs on poor substrates can yield reproducible plant phenotypes.


2018 ◽  
Author(s):  
Maria-Dimitra Tsolakidou ◽  
Ioannis A. Stringlis ◽  
Natalia Fanega-Sleziak ◽  
Stella Papageorgiou ◽  
Antria Tsalakou ◽  
...  

AbstractComposts represent a sustainable way to suppress diseases and improve plant growth. Identification of compost-derived microbial communities enriched in the rhizosphere of plants and characterization of their traits, could facilitate the design of microbial synthetic communities (SynComs) that upon soil inoculation could yield consistent beneficial effects towards plants. Here, we characterized a collection of compost-derived bacteria, previously isolated from tomato rhizosphere, forin vitroantifungal activity against soil-borne fungal pathogens and for their potential to change growth parameters inArabidopsis. We further assessed root-competitive traits in the dominant rhizospheric genusBacillus. Certain isolated rhizobacteria displayed antifungal activity against the tested pathogens and affected growth ofArabidopsis, and Bacilli members possessed several enzymatic activities. Subsequently, we designed two SynComs with different composition and tested their effect onArabidopsisand tomato growth and health. SynCom1, consisting of different bacterial genera, displayed negative effect onArabidopsis in vitro, but promoted tomato growth in pots. SynCom2, consisting of Bacilli, didn’t affectArabidopsisgrowth, enhanced tomato growth and suppressed Fusarium wilt symptoms. Overall, we found selection of compost-derived microbes with beneficial properties in the rhizosphere of tomato plants, and observed that application of SynComs on poor substrates can yield reproducible plant phenotypes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Swati Tyagi ◽  
Kui-Jae Lee ◽  
Pratyoosh Shukla ◽  
Jong-Chan Chae

Abstract Microbial volatile compounds (MVCs) significantly influence the growth of plants and phytopathogens. However, the practical application of MVCs at the field level is limited by the fact that the concentrations at which these compounds antagonize the pathogens are often toxic for the plants. In this study, we investigated the effect of dimethyl disulfide (DMDS), one of the MVCs produced by microorganisms, on the fitness of tomato plants and its fungicidal potential against a fungal phytopathogen, Sclerotinia minor. DMDS showed strong fungicidal and plant growth promoting activities with regard to the inhibition of mycelial growth, sclerotia formation, and germination, and reduction of disease symptoms in tomato plants infected with S. minor. DMDS exposure significantly upregulated the expression of genes related to growth and defense against the pathogen in tomato. Especially, the overexpression of PR1 and PR5 suggested the involvement of the salicylic acid pathway in the induction of systemic resistance. Several morphological and ultrastructural changes were observed in the cell membrane of S. minor and the expression of ergosterol biosynthesis gene was significantly downregulated, suggesting that DMDS damaged the membrane, thereby affecting the growth and pathogenicity of the fungus. In conclusion, the tripartite interaction studies among pathogenic fungus, DMDS, and tomato revealed that DMDS played roles in antagonizing pathogen as well as improving the growth and disease resistance of tomato. Our findings provide new insights into the potential of volatile DMDS as an effective tool against sclerotial rot disease.


2011 ◽  
Vol 101 (6) ◽  
pp. 732-740 ◽  
Author(s):  
Mee Kyung Sang ◽  
Ki Deok Kim

We investigated direct and indirect effects of compost water extracts (CWEs) from Iljuk-3, Iljuk-7, Shinong-8, and Shinong-9 for the control of anthracnoses caused by Colletotrichum coccodes on pepper and C. orbiculare on cucumber. All tested CWEs significantly (P < 0.05) inhibited in vitro conidial germination and appressorium formation of the fungal pathogens; however, DL-β-amino-n-butyric acid (BABA) failed to inhibit the conidial development of the pathogens. Direct treatments of the CWEs and BABA on pepper and cucumber leaves at 1 and 3 days before or after inoculation significantly (P < 0.05) reduced anthracnose severities; Iljuk-3, Shinong-9, and BABA for pepper and Iljuk-7 for cucumber had more protective activities than curative activities. In addition, root treatment of CWEs suppressed anthracnoses on the plants by the pathogens; however, CWE treatment on lower leaves failed to reduce the diseases on the upper leaves of the plants. The CWE root treatments enhanced not only the expression of the pathogenesis-related (PR) genes CABPR1, CABGLU, CAChi2, CaPR-4, CAPO1, and CaPR-10 in pepper and PR1-1a, PR-2, PR-3, and APOX in cucumber but also the activity of β-1,3-glucanase, chitinase, and peroxidase and the generation of hydrogen peroxide in pepper and cucumber under pathogen-inoculated conditions. However, the CWE treatments failed to induce the plant responses under pathogen-free conditions. These results indicated that the CWEs had direct effects, reducing anthracnoses by C. coccodes on pepper leaves and C. orbiculare on cucumber leaves through protective and curative effects. In addition, CWE root treatments could induce systemic resistance in the primed state against pathogens on plant leaves that enhanced PR gene expression, defense-related enzyme production, and hydrogen peroxide generation rapidly and effectively immediately after pathogen infection. Thus, the CWEs might suppress anthracnoses on leaves of both pepper and cucumber through primed (priming-mediated) systemic resistance.


2004 ◽  
Vol 29 (2) ◽  
pp. 288-295 ◽  
Author(s):  
Harllen Sandro Alves Silva ◽  
Reginaldo da Silva Romeiro ◽  
Dirceu Macagnan ◽  
Bernardo de Almeida Halfeld-Vieira ◽  
Maria Cristina Baracat Pereira ◽  
...  

2020 ◽  
Author(s):  
Halima Z. Hussein ◽  
Shaker I. Al-Dulaimi

AbstractChemical approaches have been applied to combat Fusarium wilt disease for a long time. Even though pesticides are effective in controlling the disease, they continue to damage the environment. Environmental-friendly approaches to manage plant disease are the goal of many studies recently. This study was conducted to assess the efficacy of some bio-agents in induction of systemic resistance in tomato plants as a management approach of Fusarium wilt disease caused by Fusarium oxysporum f.sp. lycopersici (FOL) under condition Plastic house. Results of the plastic house experiments showed that all treatments in decreased Fusarium disease percentage and severity on tomato, two bacterial combinations (Streptomyces sp. (St) and Pseudomonas fluorescence (Pf)) decreased the infection percentage and disease severity with 16.6% and 8.3%, respectively. Treatment with St reduced the infection percentage and disease severity with 33.3% and 22.8%, while the Pf treatment showed 41.6% and 31.2% reduction in infection percentage and disease severity, compared to 100% and 91.6% in the control treatment. Results of induced systemic resistance (ISR) biochemical indicators showed significant differences in tomato plants. Peroxidase and Phenylalanine-Ammonia-Lyase (PAL) activity and the Phenol content increased significantly 14 days after treatments compared to the control treatment, which contains only the fungal pathogen FOL.


Sign in / Sign up

Export Citation Format

Share Document