linearized bregman iteration
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 1)

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3224
Author(s):  
Sining Huang ◽  
Yupeng Chen ◽  
Tiantian Qiao

This paper proposes an effective extended reweighted ℓ1 minimization algorithm (ERMA) to solve the basis pursuit problem minu∈Rnu1:Au=f in compressed sensing, where A∈Rm×n, m≪n. The fast algorithm is based on linearized Bregman iteration with soft thresholding operator and generalized inverse iteration. At the same time, it also combines the iterative reweighted strategy that is used to solve minu∈Rnupp:Au=f problem, with the weight ωiu,p=ε+ui2p/2−1. Numerical experiments show that this l1 minimization persistently performs better than other methods. Especially when p=0, the restored signal by the algorithm has the highest signal to noise ratio. Additionally, this approach has no effect on workload or calculation time when matrix A is ill-conditioned.


2021 ◽  
Vol 15 (02) ◽  
Author(s):  
Xiaoxiu Zhu ◽  
Limin Liu ◽  
Baofeng Guo ◽  
Wenhua Hu ◽  
Lin Shi ◽  
...  

Author(s):  
Felipe Calliari ◽  
Gustavo Castro do Amaral ◽  
Michael Lunglmayr

Abstract Detection of level shifts in a noisy signal, or trend break detection, is a problem that appears in several research fields, from biophysics to optics and economics. Although many algorithms have been developed to deal with such a problem, accurate and low-complexity trend break detection is still an active topic of research. The Linearized Bregman Iterations have been recently presented as a low-complexity and computationally efficient algorithm to tackle this problem, with a formidable structure that could benefit immensely from hardware implementation. In this work, a hardware architecture of the Linearized Bregman Iteration algorithm is presented and tested on a Field Programmable Gate Array (FPGA). The hardware is synthesized in different-sized FPGAs, and the percentage of used hardware, as well as the maximum frequency enabled by the design, indicate that an approximately 100 gain factor in processing time, concerning the software implementation, can be achieved. This represents a tremendous advantage in using a dedicated unit for trend break detection applications. The proposed architecture is compared with a state-of-the-art hardware structure for sparse estimation, and the results indicate that its performance concerning trend break detection is much more pronounced while, at the same time, being the indicated solution for long datasets.


Aging ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 6206-6224 ◽  
Author(s):  
Weimin Zheng ◽  
Bin Cui ◽  
Zeyu Sun ◽  
Xiuli Li ◽  
Xu Han ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 423
Author(s):  
Gustavo Castro do Amaral ◽  
Felipe Calliari ◽  
Michael Lunglmayr

Trend break detection is a fundamental problem that materializes in many areas of applied science, where being able to identify correctly, and in a timely manner, trend breaks in a noisy signal plays a central role in the success of the application. The linearized Bregman iterations algorithm is one of the methodologies that can solve such a problem in practical computation times with a high level of accuracy and precision. In applications such as fault detection in optical fibers, the length N of the dataset to be processed by the algorithm, however, may render the total processing time impracticable, since there is a quadratic increase on the latter with respect to N. To overcome this problem, the herewith proposed profile-splitting methodology enables blocks of data to be processed simultaneously, with significant gains in processing time and comparable performance. A thorough analysis of the efficiency of the proposed methodology stipulates optimized parameters for individual hardware units implementing the profile-splitting. These results pave the way for high performance linearized Bregman iteration algorithm hardware implementations capable of efficiently dealing with large datasets.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Chengcai Leng ◽  
Dongdong Yu ◽  
Shuang Zhang ◽  
Yu An ◽  
Yifang Hu

Optical molecular imaging is a promising technique and has been widely used in physiology, and pathology at cellular and molecular levels, which includes different modalities such as bioluminescence tomography, fluorescence molecular tomography and Cerenkov luminescence tomography. The inverse problem is ill-posed for the above modalities, which cause a nonunique solution. In this paper, we propose an effective reconstruction method based on the linearized Bregman iterative algorithm with sparse regularization (LBSR) for reconstruction. Considering the sparsity characteristics of the reconstructed sources, the sparsity can be regarded as a kind ofa prioriinformation and sparse regularization is incorporated, which can accurately locate the position of the source. The linearized Bregman iteration method is exploited to minimize the sparse regularization problem so as to further achieve fast and accurate reconstruction results. Experimental results in a numerical simulation andin vivomouse demonstrate the effectiveness and potential of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document