echelon fault
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Vincent Twomey ◽  
William McCarthy ◽  
Craig Magee

<p>Laccoliths play a significant role in the transport and storage of magma in sub-volcanic systems. The construction and geometry of laccoliths can influence host rock and surface deformation patterns that may precede and provide warning of active magmatism and impending eruptions. Yet how laccolith construction and internal magma dynamics controls the location and form of magma ascent conduits (e.g., dykes and inclined sheets), which facilitate magma evacuation and may feed volcanic eruptions, remains poorly documented in natural examples.</p><p>The excellently exposed silicic, sub-volcanic Miocene Reyðarártindur Laccolith in SE Iceland offers an opportunity to investigate how magma ascent within inclined sheets, which emanated from the laccolith, related to intrusion construction and deformation in the surrounding host rock. We combine detailed structural mapping with anisotropy of magnetic susceptibility (AMS) analyses, which allow us to map magnetic rock fabrics that reflect magma flow patterns, to show that the laccolith comprises of several distinct magma lobes that intruded laterally towards the south-west. Each lobe intruded, inflated, and coalesced along a NE-SW primary axis facilitated by doming (i.e., forced folding) of the host rock. We also shown that pre-existing NNE-striking, left-stepping, en-echelon fault/fractures, as well as those generated during intrusion-induced host rock uplift, host moderately to steeply inclined rhyolitic/granophyric sheets that emanate from the lateral terminations of some flow lobes.</p><p>Based on the observed geometrical relationships between AMS fabrics and the sheet margins where magnetic foliations subparallel sheet contacts, or characterize an imbrication fabric, we suggest that magma evacuated moderately to steeply upward via these fault/fracture-controlled sheets. As these inclined sheets dip towards the laccolith, any eruptions they may have fed would have been laterally offset from the laccolith and any overlying surface deformation driven by forced folding. Our study shows that magma evacuation and ascent from laccoliths can be facilitated by inclined sheets that form at the lateral terminations of magma lobes that are spatially controlled by laccolith construction (e.g., flow direction and doming of the host rock) and the presence of pre-existing structures.</p>



2020 ◽  
Author(s):  
Frank Zwaan ◽  
Giacomo Corti ◽  
Derek Keir ◽  
Federico Sani ◽  
Ameha Muluneh ◽  
...  

<p>This multidisciplinary study focuses on the tectonics of the Western Afar Margin (WAM), which is situated between the Ethiopian Plateau and Afar Depression in East Africa. The WAM represents a developing passive margin in a highly volcanic setting, thus offering unique opportunities for the study of rifting and (magma-rich) continental break-up, and our results have both regional and global implications.</p><p>Earthquake analysis shows that the margin is still deforming under a ca. E-W extension regime (a result also obtained by analysis on fault measurements from recent field campaigns), whereas Afar itself undergoes a more SW-NE extension. Together with GPS data, we see Afar currently opening in a rotational fashion. This opening is however a relatively recent and local phenomenon, due to the rotation of the Danakil microcontinent modifying the regional stress field (since 11 Ma). Regional tectonics is otherwise dominated by the rotation of Arabia since 25 Ma and should cause SW-NE (oblique) extension along the WAM. This oblique motion is indeed recorded in the large-scale en echelon fault patterns along the margin, which were reactivated in the current E-W extension regime. We thus have good evidence of a multiphase rotational history of the WAM and Afar.</p><p>Furthermore, analysis of the margin’s structural architecture reveals large-scale flexure towards Afar, likely representing the developing seaward-dipping reflectors that are typical for magma-rich margins. Detailed fault mapping and earthquake analysis show that recent faulting is dominantly antithetic (dipping away from the rift), bounding remarkable marginal grabens, although a large but older synthetic escarpment fault system is present as well. By means of analogue modelling efforts we find that marginal flexure indeed initially develops a large escarpment, whereas the currently active structures only form after significant flexure. Moreover, these models show that marginal grabens do not develop under oblique extension conditions. Instead, the latter model boundary conditions create the large-scale en echelon fault arrangement typical of the WAM. We derive that the recent structures of the margin could have developed only after a shift to local orthogonal extension. These modeling results support the multiphase extension scenario as described above.</p><p>Altogether, our findings are highly relevant for our understanding of the structural evolution of (magma-rich) passive margins. Indeed, seismic sections of such margins show very similar structures to those of the WAM. However, the general lack of marginal grabens, which are so obvious along the WAM, can be explained by the fact that most rift systems undergo or have undergone oblique extension, often in multiple phases during which structures from older phases control subsequent deformation.</p>





2018 ◽  
Vol 45 (10) ◽  
pp. 4799-4808 ◽  
Author(s):  
James W. Patterson ◽  
Thomas Driesner ◽  
Stephan K. Matthai


2017 ◽  
Author(s):  
Yijun Wang ◽  
◽  
Michele L. Cooke ◽  
Sarah Titus
Keyword(s):  


2016 ◽  
Vol 154 (4) ◽  
pp. 875-887 ◽  
Author(s):  
G. C. KOTHYARI ◽  
R. K. DUMKA ◽  
A. P. SINGH ◽  
G. CHAUHAN ◽  
M. G. THAKKAR ◽  
...  

AbstractWe describe a study of the E–W-trending South Wagad Fault (SWF) complex at the eastern part of the Kachchh Rift Basin (KRB) in Western India. This basin was filled during Late Cretaceous time, and is presently undergoing tectonic inversion. During the late stage of the inversion cycle, all the principal rift faults were reactivated as transpressional strike-slip faults. The SWF complex shows wrench geometry of an anastomosing en échelon fault, where contractional and extensional segments and offsets alternate along the Principal Deformation Zone (PDZ). Geometric analysis of different segments of the SWF shows that several conjugate faults, which are a combination of R synthetic and R’ antithetic, propagate at a short distance along the PDZ and interact, generating significant fault slip partitioning. Surface morphology of the fault zone revealed three deformation zones: a 500 m to 1 km wide single fault zone; a 5–6 km wide double fault zone; and a c. 500 m wide diffuse fault zone. The single fault zone is represented by a higher stress accumulation which is located close to the epicentre of the 2001 Bhuj earthquake of Mw 7.7. The double fault zone represents moderate stress at releasing bends bounded by two fault branches. The diffuse fault zone represents a low-stress zone where several fault branches join together. Our findings are well corroborated with the available geological and seismological data.



2015 ◽  
Vol 3 (4) ◽  
pp. SAC23-SAC34 ◽  
Author(s):  
Charline Julio ◽  
Guillaume Caumon ◽  
Mary Ford

Limited resolution and quality of seismic data and time requirements for seismic interpretation can prevent a precise description of the connections between faults. We have focused on the impact of the uncertainties related to the connectivity of en echelon fault arrays on fluid flow simulations. We used a set of 100 different stochastic models of the same en echelon fault array. These fault array models varied in the number of relay zones, relative position of fault segments, size of overlap zones, and number of relay faults. We automatically generated a flow model from each fault array model in four main steps: (1) stochastic computation of relay fault throw, (2) horizon building, (3) generation of a flow simulation grid, and (4) definition of the static and dynamic parameters. Flow simulations performed on these stochastic fault models with deterministic petrophysical parameters entailed significant variability of reservoir behavior, which cannot always discriminate between the types of fault segmentation. We observed that the simplest interpretation consisting of one fault yielded significantly biased water cut forecasts at production wells. This highlighted the importance of integrating fault connectivity uncertainty in reservoir behavior studies.



Tectonics ◽  
2010 ◽  
Vol 29 (5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Stephen B. DeLong ◽  
George E. Hilley ◽  
Michael J. Rymer ◽  
Carol Prentice


2007 ◽  
Vol 17 (3) ◽  
pp. 298-304 ◽  
Author(s):  
Liu Peixun ◽  
Ma Jin ◽  
Liu Liqiang ◽  
Ma Shengli ◽  
Cfien Guoqiang


Sign in / Sign up

Export Citation Format

Share Document