scholarly journals Sedimentary and Source-to-Sink Evolution of Intracontinental Basins: Implications for tectonic and Climate Evolution in the Late Mesozoic (Southern Junggar Basin, NW China)

2022 ◽  
Vol 9 ◽  
Author(s):  
Xutong Guan ◽  
Chaodong Wu ◽  
Xuecai Zhang ◽  
Weiwei Jia ◽  
Wei Zhang

Sedimentary investigations, petrography, heavy mineral and conglomerate component analyses, and detrital zircon U-Pb geochronology were conducted to reconstruct the sedimentary and source-to-sink evolution of the Southern Junggar Basin, an intracontinental basin in the late Mesozoic. A paludal deltaic environment evolved into a fluvial environment, and abruptly prograded into alluvial fan and aeolian environments in the Late Jurassic, which was replaced by fan deltaic and lacustrine environments in the Early Cretaceous. Three source-to-sink systems were identified, according to different source-to-sink system features. In the northern piedmont of the Tianshan Orogenic Belt, the North Tianshan Orogenic Belt mainly provided sediments in the Late Jurassic. The North Tianshan and Central Tianshan Orogenic Belt both supplied sediments in the Early Cretaceous. In the northern piedmont of the Bogda Orogenic Belt, the Bogda Orogenic Belt was constantly the primary provenance, and the Tianshan Orogenic Belt also provided sediments. Sediment recycling occurred in the basin margin in the Late Jurassic and more metamorphic rocks were denudated in the Early Cretaceous. The source-to-sink system shrank in the Late Jurassic and expanded in the Early Cretaceous. This source-to-sink evolution and the conglomerates in the Kalazha Formation with seismite structures responded to the aridification in the Late Jurassic, the uplift of the Bogda and Tianshan Orogenic Belts in the Late Jurassic, and the exhumation of the Bogda and Tianshan Orogenic Belts in the Early Cretaceous.

2019 ◽  
Vol 7 (4) ◽  
pp. SH45-SH69 ◽  
Author(s):  
Kyle Reuber ◽  
Paul Mann

The Early Cretaceous (135–130 Ma) continental rupture of Western Gondwana to form the South American and African plates closely paralleled the elongate trends of Precambrian and Paleozoic orogenic belts. These orogenic belts were produced as a result of the Neoproterozoic convergent and strike-slip assembly of Gondwana that redeformed during later, Paleozoic orogenic events. Continued continental rifting led to the formation of conjugate, South Atlantic volcanic passive margins whose widths vary from 55 to 180 km. Along-strike variations in crustal stretching, as measured from deep-penetration seismic reflection profiles, correlate with parallel and oblique orientations of rifts relative to the trend of the orogenic, basement fabric. Where orogenic fabric trends parallel to the north–south South Atlantic rift direction such as in the Dom Feliciano orogenic belt of Uruguay and Brazil and the Kaoko Uruguay/Brazil and Kaoko orogenic belt of Namibia, we observe narrow (55–90 km) rift zones with modest continental beta factors of 2.5–3.5 because smaller amounts of rifting were needed to stretch the weaker and parallel, orogenic, basement fabric. Where the basement fabric trends near-orthogonally to the north–south South Atlantic rift direction such as in the Salado suture of Southern Uruguay and the Damara Belt of Namibia, we observe wider (185–220 km) rift zones with higher beta factors of 4.3–5 because greater amounts of stretching were needed to rupture the orthogonal, orogenic, basement fabric. The rift-oblique Gariep Belt intersects the South Atlantic continental rupture at an intermediate angle (30°) and exhibits a predicted intermediate beta factor of 4.0. A compilation of published beta factors from 36 other rifted margins worldwide supports the same basement-trend-degree of stretching relationship that we have developed — with rift-parallel margins having lower beta factors in a range of 1.3–3.5 and rift-orthogonal or oblique margins having higher beta factors in a range of 4–8.


2017 ◽  
Vol 188 (1-2) ◽  
pp. 9 ◽  
Author(s):  
Marc Jolivet ◽  
Anastasia Arzhannikova ◽  
Andrei Frolov ◽  
Sergei Arzhannikov ◽  
Natalia Kulagina ◽  
...  

The Late Jurassic - Early Cretaceous tectonic evolution of SE Siberia was marked by the closure of the Mongol-Okhotsk ocean. While this geodynamic event led to compressive deformation and denudation in a wide area encompassing the North-Altay, Sayan and Baikal Patom ranges, it was contemporaneous to widespread extension from the Transbaikal region situated immediately north of the suture zone to the Pacific plate, affecting eastern Mongolia and northeastern China. In this study we review the paleontological and sedimentological data available in the Russian literature and provide new macro-floral and palynological data from the Mesozoic sediments of three Transbaikal basins. These data are used to describe the paleoenvironmental and paleoclimatic evolution of the Transbaikal area in order to assess the topographic evolution of the region in relation with the closure of the Mongol-Okhotsk ocean. We establish that the Transbaikal basins evolved in a continuously extensional tectonic setting from at least the Early-Middle Jurassic to the Early Cretaceous. The associated sedimentary environments are characterized by retrogradation from alluvial fan–braided river dominated systems prevailing during the Early to Middle Jurassic initial opening of the basins to meandering river– lacustrine systems that developed during the Late Jurassic - Early Cretaceous interval. No evidence of high relief topography was found and we conclude that, while compression and denudation occurred in the North Altai, Sayan and Patom ranges, in the Transbaikal region, the docking of the Mongolia-North China continent to Siberia was a “soft collision” event, possibly involving a major strike-slip displacement that did not lead to an orogenic event implying strong compressive deformation, crustal thickening and topography building.


2009 ◽  
Vol 146 (5) ◽  
pp. 638-651 ◽  
Author(s):  
LING CHEN ◽  
CHANG-QIAN MA ◽  
ZHEN-BING SHE ◽  
ROGER MASON ◽  
JIN-YANG ZHANG ◽  
...  

AbstractThe Dabie orogenic belt is characterized by the presence of large volumes of intrusive and volcanic rocks that formed in Late Mesozoic times. Most of the intrusive bodies are I-type granites but it is still unclear whether there are contemporary A-type granites. Here, we report the first unambiguous discovery of A-type granite from Baiyashan in the North Dabie tectonic belt. The crystallization age of the body has been fixed as 120.4 ± 1.2 Ma using U–Pb analysis of zircons by LA-ICPMS. The Baiyashan granite is enriched in Si, K, Na, Rb and REE, has elevated FeOtot/(FeOtot + MgO) and Ga/Al ratios, and is depleted in Mg, Ca, Mn, Ba, Sr, P and Ti. The REE composition shows highly fractionated patterns with (La/Yb)N = 6.95–16.68 and Eu*/Eu = 0.33–0.59. Its crystallization age, field relationships, petrographic and geochemical data show beyond doubt that the Baiyashan granite is an Early Cretaceous A-type granite. Sr–Nd isotope systematics are characterized by a high ISr of 0.708–0.714 and a low ɛNd of −7.5 to −19.4, with TDM2 = 1.5–2.5 Ga, and these data indicate that the magmas were dominantly sourced from partial melting of middle to lower crustal intermediate-felsic igneous rocks and mingling with mafic to intermediate magmas, during rift-related magmatism associated with subduction of the Palaeo-Pacific Plate beneath Eastern China in Early Cretaceous times.


2013 ◽  
Vol 50 (3) ◽  
pp. 315-323 ◽  
Author(s):  
Richard L. Cifelli ◽  
Cynthia L. Gordon ◽  
Thomas R. Lipka

Multituberculates, though among the most commonly encountered mammalian fossils of the Mesozoic, are poorly known from the North American Early Cretaceous, with only one taxon named to date. Herein we describe Argillomys marylandensis, gen. et sp. nov., from the Early Cretaceous of Maryland, based on an isolated M2. Argillomys represents the second mammal known from the Arundel Clay facies of the Patuxent Formation (Lower Cretaceous: Aptian). Though distinctive in its combination of characters (e.g., enamel ornamentation consisting of ribs and grooves only, cusp formula 2:4, presence of distinct cusp on anterobuccal ridge, enlargement of second cusp on buccal row, central position of ultimate cusp in lingual row, great relative length), the broader affinities of Argillomys cannot be established because of non-representation of the antemolar dentition. Based on lack of apomorphies commonly seen among Cimolodonta (e.g., three or more cusps present in buccal row, fusion of cusps in lingual row, cusps strongly pyramidal and separated by narrow grooves), we provisionally regard Argillomys as a multituberculate of “plagiaulacidan” grade. Intriguingly, it is comparable in certain respects to some unnamed Paulchoffatiidae, a family otherwise known from the Late Jurassic – Early Cretaceous of the Iberian Peninsula.


Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
YaYun Liang ◽  
Wenhui Guo ◽  
Yao Ma ◽  
Enquan Zhao

Abstract The eastern North China Craton (NCC) has been recognised as undergoing cratonic destruction during the Mesozoic; however, the mechanism of its destruction is still unclear. The main difference between the proposed models is whether the lower continental crust (LCC) underwent thinning. In this study, we conducted comprehensive analyses of Late Mesozoic felsic intrusive rocks, including Late Jurassic granites (166–146 Ma), Early Cretaceous granodiorites (136–123 Ma), and latest Early Cretaceous granites (123–108 Ma) from the Jiaodong Peninsula, located on the southeastern margin of the NCC. These rocks allowed us to investigate variations in the LCC thickness in this region and to further discuss the destruction mechanism of the eastern NCC. Here, temporal variations in crustal thickness can be tracked using whole-rock La/Yb ratios of the felsic intrusive rocks. Our study shows that the continental crust in the eastern NCC thickened during the Late Jurassic (>40 km) due to compression and the westward subduction of the Palaeo-Pacific Ocean lithosphere beneath the NCC since the Early Jurassic. The continental crust further thickened during the Early Cretaceous, caused by the steepening of the subducting slab after ~144 Ma that produced crustal underplating of mantle-derived melts in an extensional setting. However, the continental crust thinned (20–40 km) during the latest Early Cretaceous, caused by the rollback of the subducting slab after ~123 Ma. The geochemical compositions of three stages of felsic intrusions also suggest that the regional tectonic stress that affects the eastern NCC altered from a compressional to an intraplate extensional environment after ~144 Ma. Thus, the Late Mesozoic destruction of the eastern NCC and its accompanying magmatism were controlled by prolonged thermomechanical-chemical erosion due to low-angle subduction, steepening, and rollback of the Palaeo-Pacific Oceanic lithosphere.


Lithos ◽  
2019 ◽  
Vol 336-337 ◽  
pp. 242-257 ◽  
Author(s):  
Yuan-Shuo Zhang ◽  
Wolfgang Siebel ◽  
Song He ◽  
Yan Wang ◽  
Fukun Chen

Sign in / Sign up

Export Citation Format

Share Document