uv resonance raman spectroscopy
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 12)

H-INDEX

29
(FIVE YEARS 2)

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1316
Author(s):  
Lyuba Ilieva ◽  
Petya Petrova ◽  
Anna Maria Venezia ◽  
Elena Maria Anghel ◽  
Razvan State ◽  
...  

Considerable efforts to reduce the harmful emissions of volatile organic compounds (VOCs) have been directed towards the development of highly active and economically viable catalytic materials for complete hydrocarbon oxidation. The present study is focused on the complete benzene oxidation as a probe reaction for VOCs abatement over Co3O4-CeO2 mixed oxides (20, 30, and 40 wt.% of ceria) synthesized by the more sustainable, in terms of less waste, less energy and less hazard, mechanochemical mixing of cerium hydroxide and cobalt hydroxycarbonate precursors. The catalysts were characterized by BET, powder XRD, H2-TPR, UV resonance Raman spectroscopy, and XPS techniques. The mixed oxides exhibited superior catalytic activity in comparison with Co3O4, thus, confirming the promotional role of ceria. The close interaction between Co3O4 and CeO2 phases, induced by mechanochemical treatment, led to strained Co3O4 and CeO2 surface structures. The most significant surface defectiveness was attained for 70 wt.% Co3O4-30 wt.% CeO2. A trend of the highest surface amount of Co3+, Ce3+ and adsorbed oxygen species was evidenced for the sample with this optimal composition. The catalyst exhibited the best performance and 100% benzene conversion was reached at 200 °C (relatively low temperature for noble metal-free oxide catalysts). The catalytic activity at 200 °C was stable without any products of incomplete benzene oxidation. The results showed promising catalytic properties for effective VOCs elimination over low-cost Co3O4-CeO2 mixed oxides synthesized by simple and eco-friendly mechanochemical mixing.


Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1003
Author(s):  
Georgette Azemtsop Matanfack ◽  
Aikaterini Pistiki ◽  
Petra Rösch ◽  
Jürgen Popp

Raman stable isotope probing (Raman-SIP) is an excellent technique that can be used to access the overall metabolism of microorganisms. Recent studies have mainly used an excitation wavelength in the visible range to characterize isotopically labeled bacteria. In this work, we used UV resonance Raman spectroscopy (UVRR) to evaluate the spectral red-shifts caused by the uptake of isotopes (13C, 15N, 2H(D) and 18O) in E. coli cells. Moreover, we present a new approach based on the extraction of labeled DNA in combination with UVRR to identify metabolically active cells. The proof-of-principle study on E. coli revealed heterogeneities in the Raman features of both the bacterial cells and the extracted DNA after labeling with 13C, 15N, and D. The wavelength of choice for studying 18O- and deuterium-labeled cells is 532 nm is, while 13C-labeled cells can be investigated with visible and deep UV wavelengths. However, 15N-labeled cells are best studied at the excitation wavelength of 244 nm since nucleic acids are in resonance at this wavelength. These results highlight the potential of the presented approach to identify active bacterial cells. This work can serve as a basis for the development of new techniques for the rapid and efficient detection of active bacteria cells without the need for a cultivation step.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 824
Author(s):  
Sara Catalini ◽  
Barbara Rossi ◽  
Mariagrazia Tortora ◽  
Paolo Foggi ◽  
Alessandro Gessini ◽  
...  

The hydrogen bonding of water and water/salt mixtures around the proline-based tripeptide model glycyl-l-prolyl-glycinamide·HCl (GPG-NH2) is investigated here by multi-wavelength UV resonance Raman spectroscopy (UVRR) to clarify the role of ion–peptide interactions in affecting the conformational stability of this peptide. The unique sensitivity and selectivity of the UVRR technique allow us to efficiently probe the hydrogen bond interaction between water molecules and proline residues in different solvation conditions, along with its influence on trans to cis isomerism in the hydrated tripeptide. The spectroscopic data suggest a relevant role played by the cations in altering the solvation shell at the carbonyl site of proline., while the fluoride and chloride anions were found to promote the establishment of the strongest interactions on the C=O site of proline. This latter effect is reflected in the greater stabilization of the trans conformers of the tripeptide in the presence of these specific ions. The molecular view provided by UVRR experiments was complemented by the results of circular dichroism (CD) measurements that show a strong structural stabilizing effect on the β-turn motif of GPG-NH2 observed in the presence of KF as a co-solute.


2020 ◽  
Vol 61 (10) ◽  
pp. 1347-1359 ◽  
Author(s):  
John G. Luz ◽  
Anne P. Beigneux ◽  
DeeAnn K. Asamoto ◽  
Cuiwen He ◽  
Wenxin Song ◽  
...  

For three decades, the LPL–specific monoclonal antibody 5D2 has been used to investigate LPL structure/function and intravascular lipolysis. 5D2 has been used to measure LPL levels, block the triglyceride hydrolase activity of LPL, and prevent the propensity of concentrated LPL preparations to form homodimers. Two early studies on the location of the 5D2 epitope reached conflicting conclusions, but the more convincing report suggested that 5D2 binds to a tryptophan (Trp)-rich loop in the carboxyl terminus of LPL. The same loop had been implicated in lipoprotein binding. Using surface plasmon resonance, we showed that 5D2 binds with high affinity to a synthetic LPL peptide containing the Trp-rich loop of human (but not mouse) LPL. We also showed, by both fluorescence and UV resonance Raman spectroscopy, that the Trp-rich loop binds lipids. Finally, we used X-ray crystallography to solve the structure of the Trp-rich peptide bound to a 5D2 Fab fragment. The Trp-rich peptide contains a short α-helix, with two Trps projecting into the antigen recognition site. A proline substitution in the α-helix, found in mouse LPL, is expected to interfere with several hydrogen bonds, explaining why 5D2 cannot bind to mouse LPL.


Holzforschung ◽  
2020 ◽  
Vol 74 (6) ◽  
pp. 605-613
Author(s):  
Etienne Montet ◽  
Estefania Isaza Ferro ◽  
Jordan Perrin ◽  
Dominique Lachenal ◽  
Christine Chirat

AbstractThis study intends to explain the difference in brightness stability between hardwood ECF and TCFz kraft pulps bleached by DEpDD and A(ZEo)(ZEo)(ZP) sequences respectively, using UV Resonance Raman (UVRR) spectroscopy. The brightness stability of the pulps was tested via dry aging experiments where the Post-Color Number (PCN) of the ECF pulp was twice that of the TCF pulp. The aged and non-aged bleached pulps were analyzed with UVRR spectroscopy to identify the cause of the large difference in PCN. The spectra of ECF and TCF bleached pulps presented clear differences in the intensities of the Raman shifts associated to lignin, lignin-like compounds, and degradation products such as muconic acids. To identify more specifically the compounds affecting the PCN, several post-bleaching treatments were applied on the ECF pulp including single stages (E, B, P, Z) or combinations (ZE, ZB, ZP), and their UVRR spectra analyzed. It was found that alkaline-soluble compounds were the main culprits for the difference in PCN values between ECF and TCFz pulps. ZP combination was the most efficient in eliminating residual lignin and other unsaturated components and for the development of brightness and brightness stability.


2020 ◽  
Vol 71 (1) ◽  
pp. 288-297
Author(s):  
Cristina M. Muntean ◽  
Ioan Bratu ◽  
Bernd Walkenfort ◽  
Mohammad Salehi ◽  
Simina A. Purcaru ◽  
...  

Dynamical properties of functional groups in 2�-deoxyadenosine-5�-monophosphate (dAMP) compound, were identified by UV resonance Raman spectroscopy (UVRR), upon varying nucleotide concentration in aqueous solution (200-600 μM). The studied full-widths at half-maximum (fwhm�s) were found between 13 - 21 cm-1 and the corresponding global relaxation times were faster than 0.817 ps and slower than 0.506 ps. Also, the band around 1430 cm-1 (C4N9-δC8H) in the UV resonance Raman spectrum of dAMP molecule at 400 μM concentration in aqueous solution, was selected for vibrational band shape analysis through time correlation function (CF) concept. Current theories developed for vibrational dephasing (Kubo-Rothschild and Oxtoby) have been applied to this profile and relevant relaxation parameters have been obtained and discussed. The best fit parameters for this dissipation channel of the vibrational excitation energy were established. To our knowledge this is the first UVRR study on nucleotide vibrational band shape analysis through time correlation function concept.


Sign in / Sign up

Export Citation Format

Share Document