scholarly journals Multi-species mechanistic model of functional response provides new insights into predator-mediated interactions in a vertebrate community

2021 ◽  
Author(s):  
Andréanne Beardsell ◽  
Dominique Gravel ◽  
Jeanne Clermont ◽  
Dominique Berteaux ◽  
Gilles Gauthier ◽  
...  

Prey handling processes are considered a key driver of short-term positive indirect effects between prey sharing the same predator. However, a growing body of research indicates that predators are rarely limited by such processes in the wild. Density-dependent changes in predator foraging behavior can also generate positive indirect effects but they are rarely included as explicit functions of prey densities in functional response models. With the aim of untangling proximate drivers of species interactions in natural communities and improve our ability to quantify interaction strength, we extended the Holling multi-species model by including density-dependent changes in predator foraging behavior. Our model, based on species traits and behavior, was inspired by the vertebrate community of the arctic tundra, where the main predator (the arctic fox) is an active forager feeding primarily on cyclic small rodent (lemming) populations and eggs of various tundra-nesting bird species. Short-term positive indirect effects of lemmings on birds have been documented over the circumpolar Arctic but the underlying proximate mechanisms remain poorly known. We used a unique data set, containing high-frequency GPS tracking, accelerometer, behavioral, and experimental data to parameterize the multi-species model, and a 15-year time series of prey densities and bird nesting success to evaluate interaction strength between species. Our results showed that: (i) prey handling processes play a minor role in our system and (ii) density-dependent changes in predator foraging behavior can be the proximate drivers of a predominant predator-mediated interaction observed in the arctic tundra. Mechanisms outlined in our study have been little studied and may play a significant role in natural systems. We hope that our study will provide a useful starting point to build mechanistic models of predation, and we think that our approach could conceivably be applied to a broad range of food webs.

Web Ecology ◽  
2003 ◽  
Vol 4 (1) ◽  
pp. 1-6 ◽  
Author(s):  
T. Okuyama ◽  
R. L. Ruyle

Abstract. An intraguild predation (IGP) system with adaptive foraging behavior was analyzed using a simple mathematical model. The main aim was to explore how the adaptive behavior affects species interactions as well as how such interactions derived from adaptive behavior affect community stability. The focal system contained top predators, intermediate predators, and basal prey. Intermediate predators exhibit antipredator behavior and balance costs (e.g. perceived predation risk) and benefits (e.g. resource intake) to determine their foraging effort. Density-dependent foraging behavior with the unique connectance of the IGP food web created unusual species interactions. Notably, increased prey density can transmit negative indirect effects to top predators while increased top predator density transmits positive indirect effects to prey population. The nature of these interactions is density-dependent. The results suggest that both IGP (as opposed to linear food chain) and adaptive foraging behaviors may strongly influence community dynamics due to emergent interactions among direct effects and indirect effects. Furthermore, the adaptive foraging of intermediate predators may stabilize the community as a whole.


2019 ◽  
Vol 89 (3) ◽  
pp. 704-715 ◽  
Author(s):  
Claire‐Cécile Juhasz ◽  
Bill Shipley ◽  
Gilles Gauthier ◽  
Dominique Berteaux ◽  
Nicolas Lecomte

Author(s):  
O. Yu. Atkov ◽  
S. G. Gorokhova

The individual dynamics of the allostatic load index was revealed mainly due to changes in the glucose level, body mass index, which makes it applicable for assessing the short-term adaptation to the stay in the conditions of shift work


2020 ◽  
pp. 75-99
Author(s):  
O. I. Sumina

One of the thermokarst relief forms is baidzharakh massif — the group of mounds separated by trenches formed as a result of the underground ice-wedge polygonal networks melting (Fig. 1). Study of baidzharakh vegetation took place on the northeast coast of the Taimyr Peninsula (the Pronchishcheva Bay area) and on the New Siberian Islands (the Kotelny Island) in 1973–1974 (Sumina, 1975, 1976, 1977a, b, 1979 et al.). The aim of this paper is to produce the classification of baidzharakh mound and trenches communities according to the Brown-Blanquet approach (Westhoff, Maarel, 1978) and to compare these data with the community types earlier established on domination principle (Sumina, 1975 et al.). The information obtained in the 1970s could be helpful in a comparative assessment of the thermokarst process dynamics over the past 4 decades, as well as for comparing these processes in other regions of the Arctic. Both studied areas are located in the northern part of the arctic tundra subzone. On the Taimyr Peninsula (and in particular in the Pronchishcheva Bay area) the plakor (zonal) communities belong to the ass. Salici polaris–Hylocomietum alaskani Matveyeva 1998. Our relevés of plakor tundra on the Kotelny Island demonstrate similarity with the zonal communities of the northeast coast of the Taimyr Peninsula (Table 2). Relevés of communities of thermokarst mounds were made within their boundaries, the size of ~ 30 m². In trenches sample plots of the same area had rectangular shape according to trench width. Relevés of plakor tundra were made on 5x6 m plots. There were marked: location in relief, moistening, stand physiognomy, nanorelief, the percent of open ground patches and degree of their overgrowing, total plant cover, that of vascular plants, mosses, and lichens (especially — crustose ons), and cover estimates for each species. The shape of thermokarst mounds depends on the stage of thermodenudation processes. Flat polygons about 0.5 m height with vegetation similar to the plakor tundra are formed at the beginning of ice melting (Fig. 3, a), after which the deformation of the mounds (from eroded flat polygon (Fig. 3, b) to eroded conical mound (Fig. 3, c). Such mounds of maximal height up to 5 m are located on the middle part of steep slopes, where thermodenudation is very active. The last stage of mound destruction is slightly convex mound with a lumpy surface and vegetation, typical to snowbed sites at slope foots (Fig. 3, d, and 5). Both on watersheds and on gentle slopes mounds are not completely destroyed; and on such elongated smooth-conical mounds dense meadow-like vegetation is developed (Fig. 6). On the Kotelny Island thermokarst mounds of all described shapes occur, while in the Pronchishcheva Bay area only flat polygons, eroded flat polygons, and elongated smooth-conical mounds are presented. Under the influence of thermodenudation the plakor (zonal) vegetation is being transformed that allows to consider the most of mound and trench communities as the variants of zonal association. On the base of 63 relevés, made in 14 baidzharakh massifs, 2 variants with 7 subvariants of the ass. Salici polaris–Hylocomietum alaskani Matveyeva 1998 were established, as well as 1 variant of the azonal ass. Poo arcticae– Dupontietum fisheri Matveyeva 1994, which combines the vegetation of wet trenches with dense herbmoss cover. A detailed description of each subvariant is done. All these syntaxa are compared with the types of mound and trenh communities established previously by the domination principle (Sumina, 1975, 1976, 1979 et al.) and with Brown-Blanquet’ syntaxa published by other authors. The Brown-Blanquet approach in compare with domination principle, clearly demonstrates the similarity between zonal and baidzharakh massifs vegetation. Diagnostic species of syntaxa of baidzharakh vegetation by other authors (Matveyeva, 1994; Zanokha, 1995; Kholod, 2007, 2014; Telyatnikov et al., 2017) differ from ours. On the one hand, this is due to the fact that all mentioned researchers worked in another areas, and on the other, with different hierarchial levels of syntaxa, which are subassociations (or vicariants) in cited works or variants and subvariants in the our. Communities of mounds as well as of trenches in different regions have unlike species composition, but similar apearance, which depends on the similarity of the life form composition and community pattern, stage of their transformation and environmental factors. This fact is a base to group communities by physiognomy in order to have an opportunity of comparative analysis of baidzharakh vegetation diversity in different regions of the Arctic. In total, 6 such groups for thermokarst mounds and trenches are proposed: “tundra-like” ― vegetation of flat polygonal mounds (or trenches) is similar to the plakor (zonal) communities; “eroded tundra-like” ― tundra-like vegetation is presented as fragments, open ground occupies the main part of flat polygonal mounds; “eroded mounds with nonassociated vegetation” ― eroded mounds of various shapes up to sharp conical with absent vegetation at the top and slopes, sparse pioneer vascular plants on a bare substrate and crustose lichens and chionophilous grasses at foots; “meadow-like” ― herb stands with a participation of tundra dwarf-shrubs, mosses, and lichens on elongated smooth-conical mounds and in moderately moist trenches; “communities in snowbeds” ― thin plant cover formed by small mosses, liverworts, crustose lichens, and sparse vascular plants in snowbed habitats on destroyed slightly convex mounds with a lumpy surface and in trenches; “communities of cotton grass” or others, depending on the dominant species ― in wet trenches where vegetation is similar to the arctic hypnum bogs with dominant hygrophyte graminoids as Eriophorum scheuchzeri, E. polystachion, Dupontia fischeri et al. This sheme according to physiognomic features of thermokarst mound and trench communities, as a simplier way to assess the current dynamic stage of the baidzharakh massifs, may be useful for monitoring the thermodenudation activity in different areas of the Arctic, particularly in connection with observed climate changes (ACIA, 2004) and a possible dramatic “cascade of their environmental consequences” (Fraser et al., 2018).


The Holocene ◽  
2020 ◽  
Vol 30 (7) ◽  
pp. 1091-1096 ◽  
Author(s):  
Eleanor MB Pereboom ◽  
Richard S Vachula ◽  
Yongsong Huang ◽  
James Russell

Wildfires in the Arctic tundra have become increasingly frequent in recent years and have important implications for tundra ecosystems and for the global carbon cycle. Lake sediment–based records are the primary means of understanding the climatic influences on tundra fires. Sedimentary charcoal has been used to infer climate-driven changes in tundra fire frequency but thus far cannot differentiate characteristics of the vegetation burnt during fire events. In forested ecosystems, charcoal morphologies have been used to distinguish changes in fuel type consumed by wildfires of the past; however, no such approach has been developed for tundra ecosystems. We show experimentally that charcoal morphologies can be used to differentiate graminoid (mean = 6.77; standard deviation (SD) = 0.23) and shrub (mean = 2.42; SD = 1.86) biomass burnt in tundra fire records. This study is a first step needed to construct more nuanced tundra wildfire histories and to understand how wildfire will impact the region as vegetation and fire change in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasir Islam ◽  
Farhan Mahmood Shah ◽  
Xu Rubing ◽  
Muhammad Razaq ◽  
Miao Yabo ◽  
...  

AbstractIn the current study, we investigated the functional response of Harmonia axyridis adults and larvae foraging on Acyrthosiphon pisum nymphs at temperatures between 15 and 35 °C. Logistic regression and Roger’s random predator models were employed to determine the type and parameters of the functional response. Harmonia axyridis larvae and adults exhibited Type II functional responses to A. pisum, and warming increased both the predation activity and host aphid control mortality. Female and 4th instar H. axyridis consumed the most aphids. For fourth instar larvae and female H. axyridis adults, the successful attack rates were 0.23 ± 0.014 h−1 and 0.25 ± 0.015 h−1; the handling times were 0.13 ± 0.005 h and 0.16 ± 0.004 h; and the estimated maximum predation rates were 181.28 ± 14.54 and 153.85 ± 4.06, respectively. These findings accentuate the high performance of 4th instar and female H. axyridis and the role of temperature in their efficiency. Further, we discussed such temperature-driven shifts in predation and prey mortality concerning prey-predator foraging interactions towards biological control.


1990 ◽  
Vol 3 (2) ◽  
pp. 237-250 ◽  
Author(s):  
John E. Walsh ◽  
William L. Chapman

Sign in / Sign up

Export Citation Format

Share Document