scholarly journals The Draft Genome Sequence of The Endophytic Streptomyces Strain VITGV156

Author(s):  
Veilumuthu P ◽  
Nagarajan T ◽  
Sasikumar S ◽  
Siva R ◽  
J Godwin Christopher

Abstract Streptomyces species is one among the dominant group of bacteria in the family Actinobacteria with a rich repertoire of secondary metabolites. Secondary metabolites with antimicrobial activity and plant growth promotor have been isolated from various Streptomyces sp. Here in this investigation, we present the draft genome of a new species, Streptomyces sp. VITGV156 isolated from healthy tomato plant (Lycopersicon esculentum) which has some rare antimicrobial secondary metabolites, like coelichelin, fluostatins, vicenistatin, nystatin, sipanmycin, and informatipeptin. The genome is 8.18 Mb in size with 6,259 protein coding genes. The average GC content of the genome is 72.61 %. Preliminary analysis with antiSMASH 6.0 revealed the presence of 29 biosynthetic gene clusters for the synthesis of potential secondary metabolites. These includes 4 NRPS (non – ribosomal peptide synthetase), 7 PKS (Polyketide Synthases), 2 RiPP (Ribosomally synthesized and post-translationally modified peptides) clusters. When we look into genes associated with secondary metabolites, 406 genes are present which includes 184 genes for cofactor and vitamins, 72 genes for terpenoids and polyketides, 70 genes for xenobiotics and 80 genes for other metabolites are present. Comparative genome analysis of VITGV156 with its closest neighbor Streptomyces luteus strain TRM45540 revealed ANI 91.22% and dDDH value 44.00%.

2018 ◽  
Vol 7 (11) ◽  
Author(s):  
Huy Quang Nguyen ◽  
Nguyen Thi-Hanh Vu ◽  
Ha Hoang Chu ◽  
Son Ky Chu ◽  
Ha Hoang ◽  
...  

This study reports the draft genome sequence of the endophytic Streptomyces cavourensis strain YBQ59, produces the antibiotics bafilomycin D, nonactic acid, prelactone B, and 5,11-epoxy-10-cadinanol. The draft genome sequence comprises ∼10.2 Mb, with a GC content of 64% and 8,958 predicted protein-coding genes, of which 14 gene clusters were found to associate with antibiotic biosynthetic pathways.


2020 ◽  
Vol 110 (9) ◽  
pp. 1503-1506
Author(s):  
Olufemi A. Akinsanmi ◽  
Lilia C. Carvalhais

Pseudocercospora macadamiae causes husk spot in macadamia in Australia. Lack of genomic resources for this pathogen has restricted acquiring knowledge on the mechanism of disease development, spread, and its role in fruit abscission. To address this gap, we sequenced the genome of P. macadamiae. The sequence was de novo assembled into a draft genome of 40 Mb, which is comparable to closely related species in the family Mycosphaerellaceae. The draft genome comprises 212 scaffolds, of which 99 scaffolds are over 50 kb. The genome has a 49% GC content and is predicted to contain 15,430 protein-coding genes. This draft genome sequence is the first for P. macadamiae and represents a valuable resource for understanding genome evolution and plant disease resistance.


Author(s):  
Grzegorz Czerwonka ◽  
Dawid Gmiter ◽  
Katarzyna Durlik-Popińska

Proteus mirabilis is a pathogenic, Gram-negative, rod-shaped bacterium that causes ascending urinary tract infections. Swarming motility, urease production, biofilm formation, and the properties of its lipopolysaccharide (LPS) are all factors that contribute to the virulence of this bacterium. Uniquely, members of the O18 serogroup elaborate LPS molecules capped with O antigen polymers built of pentasaccharide repeats; these repeats are modified with a phosphocholine (ChoP) moiety attached to the proximal sugar of each O unit. Decoration of the LPS with ChoP is an important surface modification of many pathogenic and commensal bacteria. The presence of ChoP on the bacterial envelope is correlated with pathogenicity, as decoration with ChoP plays a role in bacterial adhesion to mucosal surfaces, resistance to antimicrobial peptides and sensitivity to complement-mediated killing in several species. The genome of P. mirabilis O18 is 3.98 Mb in size, containing 3,762 protein-coding sequences and an overall GC content of 38.7%. Annotation performed using the RAST Annotation Server revealed genes associated with choline phosphorylation, uptake and transfer. Moreover, amino acid sequence alignment of the translated licC gene revealed it to be homologous to LicC from Streptococcus pneumoniae encoding CTP:phosphocholine cytidylyltransferase. Recognized homologs are located in the O antigen gene clusters of Proteus species, near the wzx gene encoding the O antigen flippase, which translocates lipid-linked O units across the inner membrane. This study reveals the genes potentially engaged in LPS decoration with ChoP in P. mirabilis O18.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3738 ◽  
Author(s):  
Juwairiah Remali ◽  
Nurul ‘Izzah Mohd Sarmin ◽  
Chyan Leong Ng ◽  
John J.L. Tiong ◽  
Wan M. Aizat ◽  
...  

BackgroundStreptomycesare well known for their capability to produce many bioactive secondary metabolites with medical and industrial importance. Here we report a novel bioactive phenazine compound, 6-((2-hydroxy-4-methoxyphenoxy) carbonyl) phenazine-1-carboxylic acid (HCPCA) extracted fromStreptomyces kebangsaanensis, an endophyte isolated from the ethnomedicinalPortulaca oleracea.MethodsThe HCPCA chemical structure was determined using nuclear magnetic resonance spectroscopy. We conducted whole genome sequencing for the identification of the gene cluster(s) believed to be responsible for phenazine biosynthesis in order to map its corresponding pathway, in addition to bioinformatics analysis to assess the potential ofS. kebangsaanensisin producing other useful secondary metabolites.ResultsTheS. kebangsaanensisgenome comprises an 8,328,719 bp linear chromosome with high GC content (71.35%) consisting of 12 rRNA operons, 81 tRNA, and 7,558 protein coding genes. We identified 24 gene clusters involved in polyketide, nonribosomal peptide, terpene, bacteriocin, and siderophore biosynthesis, as well as a gene cluster predicted to be responsible for phenazine biosynthesis.DiscussionThe HCPCA phenazine structure was hypothesized to derive from the combination of two biosynthetic pathways, phenazine-1,6-dicarboxylic acid and 4-methoxybenzene-1,2-diol, originated from the shikimic acid pathway. The identification of a biosynthesis pathway gene cluster for phenazine antibiotics might facilitate future genetic engineering design of new synthetic phenazine antibiotics. Additionally, these findings confirm the potential ofS. kebangsaanensisfor producing various antibiotics and secondary metabolites.


2020 ◽  
Vol 9 (24) ◽  
Author(s):  
Marina Sánchez-Hidalgo ◽  
Javier Pascual ◽  
Ignacio González ◽  
Olga Genilloud

ABSTRACT Longimicrobium terrae CB-286315T, the first member of the family Longimicrobiaceae, was isolated at the Sierra de Tejeda, Almijara and Alhama Natural Park, Spain, using a diffusion sandwich system (DSS). We present the draft genome sequence of this strain, which comprised 6,886,230 bp. A total of 12 putative biosynthetic gene clusters were predicted, including ribosomally synthesized and posttranslationally modified peptides (RiPPs), polyketides, and nonribosomal peptides.


2018 ◽  
Vol 7 (8) ◽  
Author(s):  
Angelo Joshua Victoria ◽  
Ernelea Cao ◽  
Nico Salmaso ◽  
Nicola Segata ◽  
Claudio Donati

Here, we report the genome of strain JJU2, a cyanobacterium of the family Hapalosiphonaceae known to be resistant to high cadmium levels, assembled from a nonaxenic, unialgal culture from Marinduque, Philippines. The draft genome is 7.1 Mb long with a GC content of 40.05% and contains 5,625 protein-coding genes.


2018 ◽  
Vol 6 (15) ◽  
pp. e01553-17 ◽  
Author(s):  
Cecilia Chiriac ◽  
Andreea Baricz ◽  
Cristian Coman

ABSTRACT The draft genome assembly of Janthinobacterium sp. strain ROICE36 has 207 contigs, with a total genome size of 5,977,006 bp and a G+C content of 62%. Preliminary genome analysis identified 5,363 protein-coding genes and a total of 7 secondary metabolic gene clusters (encoding bacteriocins, nonribosomal peptide-synthetase [NRPS], terpene, hserlactone, and other ketide synthases).


2021 ◽  
Vol 10 (48) ◽  
Author(s):  
Sarah Mederos da Silveira ◽  
Sheila da Silva ◽  
Andrew Macrae ◽  
Rommel T. J. Ramos ◽  
Fabrício A. Araújo ◽  
...  

Pseudomonas sp. strain LAP_36 was isolated from rhizosphere soil from Deschampsia antarctica on King George Island, South Shetland Islands, Antarctica. Here, we report on its draft genome sequence, which consists of 8,794,771 bp with 60.0% GC content and 8,011 protein-coding genes.


2021 ◽  
Author(s):  
VISHNU PRASOODANAN P K ◽  
Shruti S. Menon ◽  
Rituja Saxena ◽  
Prashant Waiker ◽  
Vineet K Sharma

Discovery of novel thermophiles has shown promising applications in the field of biotechnology. Due to their thermal stability, they can survive the harsh processes in the industries, which make them important to be characterized and studied. Members of Anoxybacillus are alkaline tolerant thermophiles and have been extensively isolated from manure, dairy-processed plants, and geothermal hot springs. This article reports the assembled data of an aerobic bacterium Anoxybacillus sp. strain MB8, isolated from the Tattapani hot springs in Central India, where the 16S rRNA gene shares an identity of 97% (99% coverage) with Anoxybacillus kamchatkensis strain G10. The de novo assembly and annotation performed on the genome of Anoxybacillus sp. strain MB8 comprises of 2,898,780 bp (in 190 contigs) with a GC content of 41.8% and includes 2,976 protein-coding genes,1 rRNA operon, 73 tRNAs, 1 tm-RNA and 10 CRISPR arrays. The predicted protein-coding genes have been classified into 21 eggNOG categories. The KEGG Automated Annotation Server (KAAS) analysis indicated the presence of assimilatory sulfate reduction pathway, nitrate reducing pathway, and genes for glycoside hydrolases (GHs) and glycoside transferase (GTs). GHs and GTs hold widespread applications, in the baking and food industry for bread manufacturing, and in the paper, detergent and cosmetic industry. Hence, Anoxybacillus sp. strain MB8 holds the potential to be screened and characterized for such commercially relevant enzymes.


2021 ◽  
Author(s):  
Masa-aki Yoshida ◽  
Kazuki Hirota ◽  
Junichi Imoto ◽  
Miki Okuno ◽  
Hiroyuki Tanaka ◽  
...  

The paper nautilus, Argonauta argo, also known as the greater argonaut, is a species of octopods distinctly characterized by its pelagic lifestyle and by the presence of a spiral-shaped shell-like eggcase in females. The eggcase functions by protecting the eggs laid inside it, and by building and keeping air intakes for buoyancy. To reveal the genomic background of the species′ adaptation to pelagic lifestyle and the acquisition of its shell-like eggcase, we sequenced the draft genome sequence of the species. The genome size was 1.1 Gb, which is the smallest among the cephalopods known to date, with the top 215 scaffolds (average length 5,064,479 bp) covering 81% (1.09 Gb) of the total assembly. A total of 26,433 protein-coding genes were predicted from 16,802 assembled scaffolds. From these, we identified nearly intact HOX, Parahox, Wnt clusters and some gene clusters probably related to the pelagic lifestyle, such as reflectin, tyrosinase, and opsin. For example, opsin might have undergone an extensive duplication in order to adapt to the pelagic lifestyle, as opposed to other octopuses, which are mostly the benthic. Our gene models also discovered several genes homologous to those related to calcified shell formation in Conchiferan Mollusks, such as Pif-like, SOD, and TRX. Interestingly, comparative genomics analysis revealed that the homologous genes for such genes were also found in the genome of the octopus, which does not have a shell, as well as the basal cephalopods Nautilus. Therefore, the draft genome sequence of A. argo we presented here had not only helped us to gain further insights into the genetic background of the dynamic recruitment and dismissal of genes for the formation of an important, converging extended phenotypic structure such as the shell and the shell-like eggcase, but also the evolution of lifestyles in Cephalopods and the octopods, from benthic to pelagic.


Sign in / Sign up

Export Citation Format

Share Document