expected value of information
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 6)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 2 ◽  
Author(s):  
Domenic Di Francesco ◽  
Marios Chryssanthopoulos ◽  
Michael Havbro Faber ◽  
Ujjwal Bharadwaj

Abstract Attempts to formalize inspection and monitoring strategies in industry have struggled to combine evidence from multiple sources (including subject matter expertise) in a mathematically coherent way. The perceived requirement for large amounts of data are often cited as the reason that quantitative risk-based inspection is incompatible with the sparse and imperfect information that is typically available to structural integrity engineers. Current industrial guidance is also limited in its methods of distinguishing quality of inspections, as this is typically based on simplified (qualitative) heuristics. In this paper, Bayesian multi-level (partial pooling) models are proposed as a flexible and transparent method of combining imperfect and incomplete information, to support decision-making regarding the integrity management of in-service structures. This work builds on the established theoretical framework for computing the expected value of information, by allowing for partial pooling between inspection measurements (or groups of measurements). This method is demonstrated for a simulated example of a structure with active corrosion in multiple locations, which acknowledges that the data will be associated with some precision, bias, and reliability. Quantifying the extent to which an inspection of one location can reduce uncertainty in damage models at remote locations has been shown to influence many aspects of the expected value of an inspection. These results are considered in the context of the current challenges in risk based structural integrity management.


2020 ◽  
Vol 117 (26) ◽  
pp. 15200-15208 ◽  
Author(s):  
Flavia Filimon ◽  
Jonathan D. Nelson ◽  
Terrence J. Sejnowski ◽  
Martin I. Sereno ◽  
Garrison W. Cottrell

Do dopaminergic reward structures represent the expected utility of information similarly to a reward? Optimal experimental design models from Bayesian decision theory and statistics have proposed a theoretical framework for quantifying the expected value of information that might result from a query. In particular, this formulation quantifies the value of information before the answer to that query is known, in situations where payoffs are unknown and the goal is purely epistemic: That is, to increase knowledge about the state of the world. Whether and how such a theoretical quantity is represented in the brain is unknown. Here we use an event-related functional MRI (fMRI) task design to disentangle information expectation, information revelation and categorization outcome anticipation, and response-contingent reward processing in a visual probabilistic categorization task. We identify a neural signature corresponding to the expectation of information, involving the left lateral ventral striatum. Moreover, we show a temporal dissociation in the activation of different reward-related regions, including the nucleus accumbens, medial prefrontal cortex, and orbitofrontal cortex, during information expectation versus reward-related processing.


2020 ◽  
Vol 34 (06) ◽  
pp. 10292-10301
Author(s):  
Ivan Vendrov ◽  
Tyler Lu ◽  
Qingqing Huang ◽  
Craig Boutilier

Effective techniques for eliciting user preferences have taken on added importance as recommender systems (RSs) become increasingly interactive and conversational. A common and conceptually appealing Bayesian criterion for selecting queries is expected value of information (EVOI). Unfortunately, it is computationally prohibitive to construct queries with maximum EVOI in RSs with large item spaces. We tackle this issue by introducing a continuous formulation of EVOI as a differentiable network that can be optimized using gradient methods available in modern machine learning computational frameworks (e.g., TensorFlow, PyTorch). We exploit this to develop a novel Monte Carlo method for EVOI optimization, which is much more scalable for large item spaces than methods requiring explicit enumeration of items. While we emphasize the use of this approach for pairwise (or k-wise) comparisons of items, we also demonstrate how our method can be adapted to queries involving subsets of item attributes or “partial items,” which are often more cognitively manageable for users. Experiments show that our gradient-based EVOI technique achieves state-of-the-art performance across several domains while scaling to large item spaces.


2020 ◽  
Author(s):  
Letícia Siqueira dos Santos ◽  
Susana Margarida da Graça Santos ◽  
Antonio Alberto de Souza dos Santos ◽  
Denis José Schiozer ◽  
Luis Otávio Mendes da Silva

2017 ◽  
Vol 37 (7) ◽  
pp. 747-758 ◽  
Author(s):  
Anna Heath ◽  
Ioanna Manolopoulou ◽  
Gianluca Baio

In recent years, value-of-information analysis has become more widespread in health economic evaluations, specifically as a tool to guide further research and perform probabilistic sensitivity analysis. This is partly due to methodological advancements allowing for the fast computation of a typical summary known as the expected value of partial perfect information (EVPPI). A recent review discussed some approximation methods for calculating the EVPPI, but as the research has been active over the intervening years, that review does not discuss some key estimation methods. Therefore, this paper presents a comprehensive review of these new methods. We begin by providing the technical details of these computation methods. We then present two case studies in order to compare the estimation performance of these new methods. We conclude that a method based on nonparametric regression offers the best method for calculating the EVPPI in terms of accuracy, computational time, and ease of implementation. This means that the EVPPI can now be used practically in health economic evaluations, especially as all the methods are developed in parallel with R functions and a web app to aid practitioners.


Sign in / Sign up

Export Citation Format

Share Document