scholarly journals Decision-theoretic inspection planning using imperfect and incomplete data

2021 ◽  
Vol 2 ◽  
Author(s):  
Domenic Di Francesco ◽  
Marios Chryssanthopoulos ◽  
Michael Havbro Faber ◽  
Ujjwal Bharadwaj

Abstract Attempts to formalize inspection and monitoring strategies in industry have struggled to combine evidence from multiple sources (including subject matter expertise) in a mathematically coherent way. The perceived requirement for large amounts of data are often cited as the reason that quantitative risk-based inspection is incompatible with the sparse and imperfect information that is typically available to structural integrity engineers. Current industrial guidance is also limited in its methods of distinguishing quality of inspections, as this is typically based on simplified (qualitative) heuristics. In this paper, Bayesian multi-level (partial pooling) models are proposed as a flexible and transparent method of combining imperfect and incomplete information, to support decision-making regarding the integrity management of in-service structures. This work builds on the established theoretical framework for computing the expected value of information, by allowing for partial pooling between inspection measurements (or groups of measurements). This method is demonstrated for a simulated example of a structure with active corrosion in multiple locations, which acknowledges that the data will be associated with some precision, bias, and reliability. Quantifying the extent to which an inspection of one location can reduce uncertainty in damage models at remote locations has been shown to influence many aspects of the expected value of an inspection. These results are considered in the context of the current challenges in risk based structural integrity management.

2010 ◽  
Vol 26 (02) ◽  
pp. 106-110
Author(s):  
Ge Wang ◽  
Michael Lee ◽  
Chris Serratella ◽  
Stanley Botten ◽  
Sam Ternowchek ◽  
...  

Real-time monitoring and detection of structural degradation helps in capturing the structural conditions of ships. The latest nondestructive testing (NDT) and sensor technologies will potentially be integrated into future generations of the structural integrity management program. This paper reports on a joint development project between Alaska Tanker Company, American Bureau of Shipping (ABS), and MISTRAS. The pilot project examined the viability of acoustic emission technology as a screening tool for surveys and inspection planning. Specifically, testing took place on a 32-year-old double-hull Trans Alaska Pipeline System (TAPS) trade tanker. The test demonstrated the possibility of adapting this technology in the identification of critical spots on a tanker in order to target inspections. This targeting will focus surveys and inspections on suspected areas, thus increasing efficiency of detecting structural degradation. The test has the potential to introduce new inspection procedures as the project undertakes the first commercial testing of the latest acoustic emission technology during a tanker's voyage.


Author(s):  
Ingar Scherf ◽  
Trine Hansen ◽  
Gudfinnur Sigurdsson

Offshore Structures operate for decades in extremely hostile environments. It is important during this period that the structural integrity is efficiently managed to ensure continuous and safe operation. Increased use of enhanced oil and gas recovery means it is likely that many existing installations will remain operational for a significant period beyond the original design life. The operator needs to capture, evaluate and, if necessary, mitigate design premise changes which inevitably occur during the life of a structure. Further, advances in knowledge and technology may imply changes in codes and standards as well as in analysis methodologies. Changes in corporate structures, transfer of operator responsibility and retirement of experienced engineers call for reliable means to transfer historical data and experience to new stakeholders. Effective emergency preparedness capabilities, structural integrity assessments and inspection planning presuppose that as-is analysis models and corresponding information are easily accessible. This paper presents an implementation of the in-service integrity management process described in the new revision of NORSOK standard N-005 [1] for a large fleet of jackets at the Norwegian Continental Shelf. The process, comprising management of design premise changes as well as state-of-the-art technical solutions over a range of disciplines, has enabled the operator to prolong the service life with decades at minimum investments. A structure integrity management system (SIMS) has been developed and digitized over years and streamlined to meet the needs and challenges in the operation and management of the jacket platforms. SIMS enables a rather lean organization to control the structural integrity status of all load-bearing structures at any time. Platform reinforcements and modifications along with other operational risk reducing measures like unman the platforms in severe storms enable continued use with the same level of safety as for new manned platforms. Advanced analyses are used to document regulatory compliance. Modern fatigue and reliability based inspection planning analyses have reduced the costs needed for inspection of fatigue cracks significantly. The benefits from the SIMS system are substantial and the resulting safety and productivity gains are apparent. The continuity of knowledge and experience is maintained, reducing risk to safety and regularity. The digital transformation related to management of structural integrity status as described in NORSOK standard N-005 is realized through SIMS.


2010 ◽  
Vol 132 (10) ◽  
Author(s):  
Shun Takai

This paper presents the use of a mathematical model in updating a decision maker’s belief before selecting a product/system concept and demonstrates a procedure to calculate the maximum monetary value of such a model in terms of the expected value of information. Acquiring information about uncertainty and updating belief according to the new information is an important step in concept selection. However, obtaining additional information can be considered beneficial only if the acquisition cost is less than the benefit. In this paper, a mathematical model is used as an information source that predicts outcomes of an uncertainty. The prediction, however, is imperfect information because the model is constructed based on simplifying assumptions. Thus, the expected value of imperfect information needs to be calculated in order to evaluate the tradeoff between the accuracy and the cost of model prediction (information). The construction and analysis of a mathematical model, the calculation of the expected value of information (model prediction) and updating the belief based on the model prediction are illustrated using a concept selection for a public project.


Author(s):  
Michael Havbro Faber

The present paper is predominantly a conceptual contribution with an appraisal of major developments in risk informed structural integrity management for offshore installations together with a discussion of their merits and the challenges which still lie ahead. Starting point is taken in a selected overview of research and development contributions which have formed the basis for Risk Based Inspection Planning (RBI) as we know it today. Thereafter an outline of the methodical basis for risk informed structural systems integrity management, i.e. the Bayesian decision analysis is provided in summary. The main focus is here directed on RBI for offshore facilities subject to fatigue damages. New ideas and methodical frameworks in the area of robustness and resilience modeling of structural systems are then introduced, and it is outlined how these may adequately be utilized to enhance Structural Integrity Management (SIM). Finally, the concept of Value of Information analysis (VoI) from the Bayesian pre-posterior decision analysis is proposed, as an overarching methodical platform for the planning and optimization of structural Health Monitoring (SHM) activities in the context of SIM at both operational and strategic levels.


2017 ◽  
Vol 23 (2) ◽  
pp. 366-375 ◽  
Author(s):  
Jonathan M. Hyde ◽  
Gérald DaCosta ◽  
Constantinos Hatzoglou ◽  
Hannah Weekes ◽  
Bertrand Radiguet ◽  
...  

AbstractIrradiation of reactor pressure vessel (RPV) steels causes the formation of nanoscale microstructural features (termed radiation damage), which affect the mechanical properties of the vessel. A key tool for characterizing these nanoscale features is atom probe tomography (APT), due to its high spatial resolution and the ability to identify different chemical species in three dimensions. Microstructural observations using APT can underpin development of a mechanistic understanding of defect formation. However, with atom probe analyses there are currently multiple methods for analyzing the data. This can result in inconsistencies between results obtained from different researchers and unnecessary scatter when combining data from multiple sources. This makes interpretation of results more complex and calibration of radiation damage models challenging. In this work simulations of a range of different microstructures are used to directly compare different cluster analysis algorithms and identify their strengths and weaknesses.


2021 ◽  
Author(s):  
Alessandro La Grotta ◽  
Róisín Louise Harris ◽  
Clive Da Costa

Abstract While Floating Offshore Wind (FOW) represents a significant opportunity to foster wind energy development and to contribute to remarkable CO2 emissions reductions, its associated operational costs are still substantially above grid parity, and significant innovation is needed. MooringSense is a research and innovation project which explores digitisation technologies to enable the implementation of risk-based integrity management strategies for mooring systems in the FOW sector with the aim to optimise Operations and Maintenance (O&M) activities, reduce costs, and increase energy production. As part of this project, a risk-based assessment methodology specific for the mooring system of Floating Offshore Wind Turbines (FOWT) has been developed; this allows the development of a risk-based Mooring Integrity Management Strategy that can result in more cost-effective inspection planning. The methodology shall utilise the information made available by numerical tools, sensors, and algorithms developed in the project to update the risk level of the mooring system and set the required plan to mitigate the risk. Leveraging the additional information from monitoring technologies and predictive capabilities to determine the mooring system condition and remaining lifetime, the strategy provides the criteria for optimal decision making with regards to selection of O&M activities. The risk-based strategy developed allows for optimal planning of inspection and maintenance activities based on dynamic risk level that is periodically updated through the interface with the Digital Twin (DT). The validation of the strategy will demonstrate potential cost saving and economic advantages, however, it is expected that the overall MooringSense approach can reduce FOW farm operational costs by 10-15% and increase operational efficiency by means of an Annual Energy Production increase by 2-3%. The MooringSense project comprises of the development and validation of innovative solutions coming from multiple disciplines such as numerical modelling, simulation, Global Navigation Satellite System (GNSS), Structural Health Monitoring (SHM), and control systems which will provide valuable input to the risk-based mooring integrity management strategy.


2021 ◽  
Author(s):  
Biramarta Isnadi ◽  
Luong Ann Lee ◽  
Sok Mooi Ng ◽  
Ave Suhendra Suhaili ◽  
Quailid Rezza M Nasir ◽  
...  

Abstract The objective of this paper is to demonstrate the best practices of Topside Structural Integrity Management for an aging fleet of more than 200 platforms with about 60% of which has exceeded the design life. PETRONAS as the operator, has established a Topside Structural Integrity Management (SIM) strategy to demonstrate fitness of the offshore topside structures through a hybrid philosophy of time-based inspection with risk-based maintenance, which is in compliance to API RP2SIM (2014) inspection requirements. This paper shares the data management, methodology, challenges and value creation of this strategy. The SIM process adopted in this work is in compliance with industry standards API RP2SIM, focusing on Data-Evaluation-Strategy-Program processes. The operator HSE Risk Matrix is adopted in risk ranking of the topside structures. The main elements considered in developing the risk ranking of the topside structures are the design and assessment compliance, inspection compliance and maintenance compliance. Effective methodology to register asset and inspection data capture was developed to expedite the readiness of Topside SIM for a large aging fleet. The Topside SIM is being codified in the operator web-based tool, Structural Integrity Compliance System (SICS). Identifying major hazards for topside structures were primarily achieved via data trending post implementation of Topside SIM. It was then concluded that metal loss as the major threat. Further study on effect of metal loss provides a strong basis to move from time-based maintenance towards risk-based maintenance. Risk ranking of the assets allow the operator to prioritize resources while managing the risk within ALARP level. Current technologies such as drone and mobile inspection tools are deployed to expedite inspection findings and reporting processes. The data from the mobile inspection tool is directly fed into the web based SICS to allow reclassification of asset risk and anomalies management.


Author(s):  
Torgeir Moan

Based on relevant accident experiences with oil and gas platforms, a brief overview of structural integrity management of offshore structures is given; including an account of adequate design criteria, inspection, repair and maintenance as well as quality assurance and control of the engineering processes. The focus is on developing research based design standards for Accidental Collapse Limit States to ensure robustness or damage tolerance in view damage caused by accidental loads due to operational errors and to some extent abnormal structural damage due to fabrication errors. Moreover, it is suggested to provide robustness in cases where the structural performance is sensitive to uncertain parameters. The use of risk assessment to aid decisions in lieu of uncertainties affecting the performance of novel and existing offshore structures, is briefly addressed.


Sign in / Sign up

Export Citation Format

Share Document