rhodococcus jostii rha1
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 11)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 9 (12) ◽  
pp. 2554
Author(s):  
Tatyana Lobastova ◽  
Victoria Fokina ◽  
Sergey Tarlachkov ◽  
Andrey Shutov ◽  
Eugeny Bragin ◽  
...  

The application of thermophilic microorganisms opens new prospects in steroid biotechnology, but little is known to date on steroid catabolism by thermophilic strains. The thermophilic strain Saccharopolyspora hirsuta VKM Ac-666T has been shown to convert various steroids and to fully degrade cholesterol. Cholest-4-en-3-one, cholesta-1,4-dien-3-one, 26-hydroxycholest-4-en-3-one, 3-oxo-cholest-4-en-26-oic acid, 3-oxo-cholesta-1,4-dien-26-oic acid, 26-hydroxycholesterol, 3β-hydroxy-cholest-5-en-26-oic acid were identified as intermediates in cholesterol oxidation. The structures were confirmed by 1H and 13C-NMR analyses. Aliphatic side chain hydroxylation at C26 and the A-ring modification at C3, which are putatively catalyzed by cytochrome P450 monooxygenase CYP125 and cholesterol oxidase, respectively, occur simultaneously in the strain and are followed by cascade reactions of aliphatic sidechain degradation and steroid core destruction via the known 9(10)-seco-pathway. The genes putatively related to the sterol and bile acid degradation pathways form three major clusters in the S. hirsuta genome. The sets of the genes include the orthologs of those involved in steroid catabolism in Mycobacterium tuberculosis H37Rv and Rhodococcus jostii RHA1 and related actinobacteria. Bioinformatics analysis of 52 publicly available genomes of thermophilic bacteria revealed only seven candidate strains that possess the key genes related to the 9(10)-seco pathway of steroid degradation, thus demonstrating that the ability to degrade steroids is not widespread among thermophilic bacteria.


ACS Catalysis ◽  
2021 ◽  
pp. 5486-5495
Author(s):  
Ruben Shrestha ◽  
Kaimin Jia ◽  
Samiksha Khadka ◽  
Lindsay D. Eltis ◽  
Ping Li

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Edward M. Spence ◽  
Leonides Calvo-Bado ◽  
Paul Mines ◽  
Timothy D. H. Bugg

AbstractGenetic modification of Rhodococcus jostii RHA1 was carried out in order to optimise the production of pyridine-2,4-dicarboxylic acid and pyridine-2,5-dicarboxylic acid bioproducts from lignin or lignocellulose breakdown, via insertion of either the Sphingobium SYK-6 ligAB genes or Paenibacillus praA gene respectively. Insertion of inducible plasmid pTipQC2 expression vector containing either ligAB or praA genes into a ΔpcaHG R. jostii RHA1 gene deletion strain gave 2–threefold higher titres of PDCA production from lignocellulose (200–287 mg/L), compared to plasmid expression in wild-type R. jostii RHA1. The ligAB genes were inserted in place of the chromosomal pcaHG genes encoding protocatechuate 3,4-dioxygenase, under the control of inducible Picl or PnitA promoters, or a constitutive Ptpc5 promoter, producing 2,4-PDCA products using either wheat straw lignocellulose or commercial soda lignin as carbon source. Insertion of Amycolatopsis sp. 75iv2 dyp2 gene on a pTipQC2 expression plasmid led to enhanced titres of 2,4-PDCA products, due to enhanced rate of lignin degradation. Growth in minimal media containing wheat straw lignocellulose led to the production of 2,4-PDCA in 330 mg/L titre in 40 h, with > tenfold enhanced productivity, compared with plasmid-based expression of ligAB genes in wild-type R. jostii RHA1. Production of 2,4-PDCA was also observed using several different polymeric lignins as carbon sources, and a titre of 240 mg/L was observed using a commercially available soda lignin as feedstock.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1092
Author(s):  
Igor I. Turnaev ◽  
Konstantin V. Gunbin ◽  
Valentin V. Suslov ◽  
Ilya R. Akberdin ◽  
Nikolay A. Kolchanov ◽  
...  

YUCCA (YUCCA flavin-dependent monooxygenase) is one of the two enzymes of the main auxin biosynthesis pathway (tryptophan aminotransferase enzyme (TAA)/YUCCA) in land plants. The evolutionary origin of the YUCCA family is currently controversial: YUCCAs are assumed to have emerged via a horizontal gene transfer (HGT) from bacteria to the most recent common ancestor (MRCA) of land plants or to have inherited it from their ancestor, the charophyte algae. To refine YUCCA origin, we performed a phylogenetic analysis of the class B flavoprotein monooxygenases and comparative analysis of the sequences belonging to different families of this protein class. We distinguished a new protein family, named type IIb flavin-containing monooxygenases (FMOs), which comprises homologs of YUCCA from Rhodophyta, Chlorophyta, and Charophyta, land plant proteins, and FMO-E, -F, and -G of the bacterium Rhodococcus jostii RHA1. The type IIb FMOs differ considerably in the sites and domain composition from the other families of class B flavoprotein monooxygenases, YUCCAs included. The phylogenetic analysis also demonstrated that the type IIb FMO clade is not a sibling clade of YUCCAs. We have also identified the bacterial protein group named YUC-like FMOs as the closest to YUCCA homologs. Our results support the hypothesis of the emergence of YUCCA via HGT from bacteria to MRCA of land plants.


2020 ◽  
Vol 86 (19) ◽  
Author(s):  
Edward M. Spence ◽  
Heather T. Scott ◽  
Louison Dumond ◽  
Leonides Calvo-Bado ◽  
Sabrina di Monaco ◽  
...  

ABSTRACT Deletion of the pcaHG genes, encoding protocatechuate 3,4-dioxygenase in Rhodococcus jostii RHA1, gives a gene deletion strain still able to grow on protocatechuic acid as the sole carbon source, indicating a second degradation pathway for protocatechuic acid. Metabolite analysis of wild-type R. jostii RHA1 grown on medium containing vanillin or protocatechuic acid indicated the formation of hydroxyquinol (benzene-1,2,4-triol) as a downstream product. Gene cluster ro01857-ro01860 in Rhodococcus jostii RHA1 contains genes encoding hydroxyquinol 1,2-dioxygenase and maleylacetate reductase for degradation of hydroxyquinol but also putative mono-oxygenase (ro01860) and putative decarboxylase (ro01859) genes, and a similar gene cluster is found in the genome of lignin-degrading Agrobacterium species. Recombinant R. jostii mono-oxygenase and decarboxylase enzymes in combination were found to convert protocatechuic acid to hydroxyquinol. Hence, an alternative pathway for degradation of protocatechuic acid via oxidative decarboxylation to hydroxyquinol is proposed. IMPORTANCE There is a well-established paradigm for degradation of protocatechuic acid via the β-ketoadipate pathway in a range of soil bacteria. In this study, we have found the existence of a second pathway for degradation of protocatechuic acid in Rhodococcus jostii RHA1, via hydroxyquinol (benzene-1,2,4-triol), which establishes a metabolic link between protocatechuic acid and hydroxyquinol. The presence of this pathway in a lignin-degrading Agrobacterium sp. strain suggests the involvement of the hydroxyquinol pathway in the metabolism of degraded lignin fragments.


2019 ◽  
Author(s):  
Joni Frederick ◽  
Fritha Hennessy ◽  
Uli Horn ◽  
Pilar de la Torre Cortés ◽  
Marcel van den Broek ◽  
...  

Abstract Background Rhodococci are industrially important soil-dwelling Gram-positive bacteria that are well known for both nitrile hydrolysis and oxidative metabolism of aromatics. Rhodococcus rhodochrous ATCC BAA-870 is capable of metabolising a wide range of aliphatic and aromatic nitriles and amides. The genome of the organism was sequenced and analysed in order to better understand this whole cell biocatalyst. Results The genome of R. rhodochrous ATCC BAA-870 is the first Rhodococcus genome fully sequenced using Nanopore sequencing. The circular genome contains 5.9 megabase pairs (Mbp) and includes a 0.53 Mbp linear plasmid, that together encode 7548 predicted protein sequences according to BASys annotation, and 5535 predicted protein sequences according to RAST annotation. The genome contains numerous oxidoreductases, 15 identified antibiotic and secondary metabolite gene clusters, several terpene and nonribosomal peptide synthetase clusters, as well as 6 putative clusters of unknown type. The 0.53 Mbp plasmid encodes 677 predicted genes and contains the nitrile converting gene cluster, including a nitrilase, a low molecular weight nitrile hydratase, and an enantioselective amidase. Although there are fewer biotechnologically relevant enzymes compared to those found in rhodococci with larger genomes, such as the well-known Rhodococcus jostii RHA1, the abundance of transporters in combination with the myriad of enzymes found in strain BAA-870 might make it more suitable for use in industrially relevant processes than other rhodococci. Conclusions The sequence and comprehensive description of the R. rhodochrous ATCC BAA-870 genome will facilitate the additional exploitation of rhodococci for biotechnological applications, as well as enable further characterisation of this model organism. The genome encodes a wide range of enzymes, many with unknown substrate specificities supporting potential applications in biotechnology, including nitrilases, nitrile hydratase, monooxygenases, cytochrome P450s, reductases, proteases, lipases, and transaminases.


2019 ◽  
Vol 7 (11) ◽  
pp. 479 ◽  
Author(s):  
Gibu ◽  
Kasai ◽  
Ikawa ◽  
Akiyama ◽  
Fukuda

Gram-positive actinomycete Rhodococcus jostii RHA1 is able to grow on C10 to C19 n-alkanes as a sole source of carbon and energy. To clarify, the n-alkane utilization pathway—a cluster of 5 genes (alkBrubA1A2BalkU) which appeared to be involved in n-alkane degradation—was identified and the transcriptional regulation of these genes was characterized. Reverse transcription-PCR analyses revealed that these genes constituted an operon and were transcribed in the presence of n-alkane. Inactivation of alkB led to the absence of the ability to utilize n-undecane. The alkB mutation resulted in reduction of growth rates on C10 and C12 n-alkanes; however, growths on C13 to C19 n-alkanes were not affected by this mutation. These results suggested that alkB was essential for the utilization of C10 to C12 n-alkanes. Inactivation of alkU showed the constitutive expression of alkB. Purified AlkU is able to bind to the putative promoter region of alkB, suggesting that AlkU played a role in repression of the transcription of alk operon. The results of this study indicated that alkB was involved in the medium-chain n-alkanes degradation of strain RHA1 and the transcription of alk operon was negatively regulated by alkU-encoded regulator. This report is important to understand the n-alkane degradation pathway of R. jostii, including the transcriptional regulation of alk gene cluster.


Sign in / Sign up

Export Citation Format

Share Document