cholesterol oxidation
Recently Published Documents


TOTAL DOCUMENTS

432
(FIVE YEARS 65)

H-INDEX

50
(FIVE YEARS 4)

2022 ◽  
Vol 151 ◽  
pp. 110864
Author(s):  
Fernanda Silva Ferreira ◽  
Vanessa Sales de Oliveira ◽  
Davy William Hidalgo Chávez ◽  
Douglas Siqueira Chaves ◽  
Cristiano Jorge Riger ◽  
...  

2021 ◽  
Vol 9 (12) ◽  
pp. 2554
Author(s):  
Tatyana Lobastova ◽  
Victoria Fokina ◽  
Sergey Tarlachkov ◽  
Andrey Shutov ◽  
Eugeny Bragin ◽  
...  

The application of thermophilic microorganisms opens new prospects in steroid biotechnology, but little is known to date on steroid catabolism by thermophilic strains. The thermophilic strain Saccharopolyspora hirsuta VKM Ac-666T has been shown to convert various steroids and to fully degrade cholesterol. Cholest-4-en-3-one, cholesta-1,4-dien-3-one, 26-hydroxycholest-4-en-3-one, 3-oxo-cholest-4-en-26-oic acid, 3-oxo-cholesta-1,4-dien-26-oic acid, 26-hydroxycholesterol, 3β-hydroxy-cholest-5-en-26-oic acid were identified as intermediates in cholesterol oxidation. The structures were confirmed by 1H and 13C-NMR analyses. Aliphatic side chain hydroxylation at C26 and the A-ring modification at C3, which are putatively catalyzed by cytochrome P450 monooxygenase CYP125 and cholesterol oxidase, respectively, occur simultaneously in the strain and are followed by cascade reactions of aliphatic sidechain degradation and steroid core destruction via the known 9(10)-seco-pathway. The genes putatively related to the sterol and bile acid degradation pathways form three major clusters in the S. hirsuta genome. The sets of the genes include the orthologs of those involved in steroid catabolism in Mycobacterium tuberculosis H37Rv and Rhodococcus jostii RHA1 and related actinobacteria. Bioinformatics analysis of 52 publicly available genomes of thermophilic bacteria revealed only seven candidate strains that possess the key genes related to the 9(10)-seco pathway of steroid degradation, thus demonstrating that the ability to degrade steroids is not widespread among thermophilic bacteria.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1969
Author(s):  
Sara Barbieri ◽  
Dario Mercatante ◽  
Stefania Balzan ◽  
Sonia Esposto ◽  
Vladimiro Cardenia ◽  
...  

This study aims at evaluating the effect of a phenol-rich extract obtained from the concentration and purification of olive mill wastewaters (added at a ratio of 87.5 and 175 mg of phenols/kg meat) on the stability and sensory quality of beef hamburgers packed under modified atmosphere and stored under alternating exposure to fluorescent light at 4 ± 2 °C for 9 days. The hamburgers were sampled at different times (0, 6, and 9 days) and grilled at 200 °C. After 9 days, more than 56% of the added phenols in the raw burgers and more than 20% the grilled ones were retained. The results show that both concentrations of phenolic extract proved to effectively reduce primary and secondary lipid oxidation, as well as cholesterol oxidation products (COPs), during the shelf-life of raw hamburgers. Peroxide value, thiobarbituric acid reactive substances, and total COPs were up to 1.4-, 4.5-, and 8.8-fold lower in phenol-enriched raw hamburgers, respectively, than in the control samples; a similar trend was noted also in phenol-enriched cooked hamburgers (1.3-, 5.7-, and 4-fold lower). The sensory analysis also confirmed the effectiveness of the addition of phenolic extract, resulting in a positive effect on the red color intensity (raw product) and thus reducing browning during storage.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1890
Author(s):  
Erica Staurenghi ◽  
Serena Giannelli ◽  
Gabriella Testa ◽  
Barbara Sottero ◽  
Gabriella Leonarduzzi ◽  
...  

In recent decades, the impairment of cholesterol metabolism in the pathogenesis of Alzheimer’s disease (AD) has been intensively investigated, and it has been recognized to affect amyloid β (Aβ) production and clearance, tau phosphorylation, neuroinflammation and degeneration. In particular, the key role of cholesterol oxidation products, named oxysterols, has emerged. Brain cholesterol metabolism is independent from that of peripheral tissues and it must be preserved in order to guarantee cerebral functions. Among the cells that help maintain brain cholesterol homeostasis, astrocytes play a starring role since they deliver de novo synthesized cholesterol to neurons. In addition, other physiological roles of astrocytes are to modulate synaptic transmission and plasticity and support neurons providing energy. In the AD brain, astrocytes undergo significant morphological and functional changes that contribute to AD onset and development. However, the extent of this contribution and the role played by oxysterols are still unclear. Here we review the current understanding of the physiological role exerted by astrocytes in the brain and their contribution to AD pathogenesis. In particular, we focus on the impact of cholesterol dysmetabolism on astrocyte functions suggesting new potential approaches to develop therapeutic strategies aimed at counteracting AD development.


2021 ◽  
Vol 68 (4) ◽  
pp. 527-533
Author(s):  
Monika Burakowska ◽  
Tadeusz Sarna ◽  
Anna M. Pawlak

Cholesterol (Ch) is one of the most important components of biological membranes, which has a significant impact on their biophysical properties. As a key component of lipid membranes, Ch along with other unsaturated lipids present in a biological membrane undergoes oxidation reaction during oxidative stress. Cholesterol oxidation products, cholesteryl esters and metabolites are also localise in lipid membranes, where they may modify membrane properties. In this work the impact of cholesterol, selected cholesteryl esters, cholesterol oxidation products and metabolites on lipid peroxidation induced by photodynamic action has been studied using EPR oximetry and direct detection of singlet oxygen phosphorescence at 1270 nm. The obtained rate constants values of interaction of selected lipids and sterols with singlet oxygen indicate that the tested compounds are not efficient singlet oxygen quenchers. Nevertheless, the presence of sterols modifies to different extend the oxygen photoconsumption rate in peroxidisable liposomes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sylwia Chudy ◽  
Joanna Teichert

AbstractCholesterol oxidation products (COPs) have greater biological activity than cholesterol itself. Oxysterols reduce the nutritional value of foods and exhibit a wide range of biological activity, including pro-oxidant, carcinogenic, and cytotoxic properties. The most commonly detected oxysterols in foods are 7α-HC, 7β-HC, a product of their dehydrogenation 7-KC and α-CE, β-CE. The main dietary sources of oxysterols are eggs and egg-derived products, thermally processed milk and milk-based products, fried meat. This study aimed to measure the amount of cholesterol oxidation products in milk powder, egg powder and milk–egg powder during 24 months of storage. The changes in the selected oxysterols (determined by gas chromatography) were recorded. In milk powder, after the production process, the amount of cholesterol was 0.2 g 100 g−1 fat and in egg powder it was 3.4 g 100 g−1. After 6 months of storage, the dominant oxysterol in milk and egg powder was 7α-HC and in milk–egg powder it was 7-KC. After the storage period, oxysterols in powdered milk reached 1.81% of total cholesterol.  The most stable cholesterol was in the milk–egg mixture and its oxidation was the slowest. This study showed the presence of COPs in milk powder, egg powder and milk–egg powder and the effect of storage on cholesterol oxidation.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3821
Author(s):  
Agnieszka Stawarska ◽  
Małgorzata Czerwonka ◽  
Małgorzata Jelińska ◽  
Iga Piasecka ◽  
Barbara Bobrowska-Korczak

The aim of this study was to investigate the effect of zinc supplementation (in the form of nano or microparticles) on the profile and metabolism of fatty acids in the liver microsomes of rats with induced breast cancer. The activity of desaturases (Δ5, Δ6, Δ9) and the level of cholesterol and its oxidized derivatives were measured. The aim of this study was also to determine the effect of various forms of zinc supplements on rats that were on 5-, 12- and 15-hydroxyeicosatetraenoic (5-, 12- and 15-HETE) and hydroxyoctadecadienoic (HODE) acids, and the level of prostaglandin E2 (PGE2). Female Spraque-Dawley rats (n = 24) were divided into 2 groups that were supplemented with zinc in the micro form (342 nm) or nano form (99 nm) particles, respectively, and a group with a standard diet (control group). All animals received 7,12-dimethylbenz[a]anthracene twice for the induction of breast cancer. Dietary nano-Zn supplementation increased vaccenic acid content (p = 0.032) and decreased Δ6-desaturase activity (p = 0.006), whereas micro-Zn increased cholesterol (p = 0.006), ∑COPs (total cholesterol-oxidation products) (p = 0.019) and PGE2 (p = 0.028) content. Dietary enrichment with Zn microparticles resulted in lower concentrations of the metabolites 15-, 12- and 5-HETE and HODE. Our study indicates that the effect of zinc supplementation on the metabolism of fatty acids in the liver microsomes under neoplastic conditions depends on the form in which it is administered.


Author(s):  
Thabatta L. S. A. Rosa ◽  
Maria Angela M. Marques ◽  
Zachary DeBoard ◽  
Kelly Hutchins ◽  
Carlos Adriano A. Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document