vertebrae segmentation
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 18)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Ethan Schonfeld ◽  
Madeleine de Lotbiniere-Bassett ◽  
Tatiana Jansen ◽  
Diana Anthony ◽  
Anand Veeravagu

Tomography ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 45-58
Author(s):  
Bing Li ◽  
Chuang Liu ◽  
Shaoyong Wu ◽  
Guangqing Li

Due to the complex shape of the vertebrae and the background containing a lot of interference information, it is difficult to accurately segment the vertebrae from the computed tomography (CT) volume by manual segmentation. This paper proposes a convolutional neural network for vertebrae segmentation, named Verte-Box. Firstly, in order to enhance feature representation and suppress interference information, this paper places a robust attention mechanism on the central processing unit, including a channel attention module and a dual attention module. The channel attention module is used to explore and emphasize the interdependence between channel graphs of low-level features. The dual attention module is used to enhance features along the location and channel dimensions. Secondly, we design a multi-scale convolution block to the network, which can make full use of different combinations of receptive field sizes and significantly improve the network’s perception of the shape and size of the vertebrae. In addition, we connect the rough segmentation prediction maps generated by each feature in the feature box to generate the final fine prediction result. Therefore, the deep supervision network can effectively capture vertebrae information. We evaluated our method on the publicly available dataset of the CSI 2014 Vertebral Segmentation Challenge and achieved a mean Dice similarity coefficient of 92.18 ± 0.45%, an intersection over union of 87.29 ± 0.58%, and a 95% Hausdorff distance of 7.7107 ± 0.5958, outperforming other algorithms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pengfei Cheng ◽  
Yusheng Yang ◽  
Huiqiang Yu ◽  
Yongyi He

AbstractAutomatic vertebrae localization and segmentation in computed tomography (CT) are fundamental for spinal image analysis and spine surgery with computer-assisted surgery systems. But they remain challenging due to high variation in spinal anatomy among patients. In this paper, we proposed a deep-learning approach for automatic CT vertebrae localization and segmentation with a two-stage Dense-U-Net. The first stage used a 2D-Dense-U-Net to localize vertebrae by detecting the vertebrae centroids with dense labels and 2D slices. The second stage segmented the specific vertebra within a region-of-interest identified based on the centroid using 3D-Dense-U-Net. Finally, each segmented vertebra was merged into a complete spine and resampled to original resolution. We evaluated our method on the dataset from the CSI 2014 Workshop with 6 metrics: location error (1.69 ± 0.78 mm), detection rate (100%) for vertebrae localization; the dice coefficient (0.953 ± 0.014), intersection over union (0.911 ± 0.025), Hausdorff distance (4.013 ± 2.128 mm), pixel accuracy (0.998 ± 0.001) for vertebrae segmentation. The experimental results demonstrated the efficiency of the proposed method. Furthermore, evaluation on the dataset from the xVertSeg challenge with location error (4.12 ± 2.31), detection rate (100%), dice coefficient (0.877 ± 0.035) shows the generalizability of our method. In summary, our solution localized the vertebrae successfully by detecting the centroids of vertebrae and implemented instance segmentation of vertebrae in the whole spine.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hans Liebl ◽  
David Schinz ◽  
Anjany Sekuboyina ◽  
Luca Malagutti ◽  
Maximilian T. Löffler ◽  
...  

AbstractWith the advent of deep learning algorithms, fully automated radiological image analysis is within reach. In spine imaging, several atlas- and shape-based as well as deep learning segmentation algorithms have been proposed, allowing for subsequent automated analysis of morphology and pathology. The first “Large Scale Vertebrae Segmentation Challenge” (VerSe 2019) showed that these perform well on normal anatomy, but fail in variants not frequently present in the training dataset. Building on that experience, we report on the largely increased VerSe 2020 dataset and results from the second iteration of the VerSe challenge (MICCAI 2020, Lima, Peru). VerSe 2020 comprises annotated spine computed tomography (CT) images from 300 subjects with 4142 fully visualized and annotated vertebrae, collected across multiple centres from four different scanner manufacturers, enriched with cases that exhibit anatomical variants such as enumeration abnormalities (n = 77) and transitional vertebrae (n = 161). Metadata includes vertebral labelling information, voxel-level segmentation masks obtained with a human-machine hybrid algorithm and anatomical ratings, to enable the development and benchmarking of robust and accurate segmentation algorithms.


Informatics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 40
Author(s):  
Nicola Altini ◽  
Giuseppe De Giosa ◽  
Nicola Fragasso ◽  
Claudia Coscia ◽  
Elena Sibilano ◽  
...  

The accurate segmentation and identification of vertebrae presents the foundations for spine analysis including fractures, malfunctions and other visual insights. The large-scale vertebrae segmentation challenge (VerSe), organized as a competition at the Medical Image Computing and Computer Assisted Intervention (MICCAI), is aimed at vertebrae segmentation and labeling. In this paper, we propose a framework that addresses the tasks of vertebrae segmentation and identification by exploiting both deep learning and classical machine learning methodologies. The proposed solution comprises two phases: a binary fully automated segmentation of the whole spine, which exploits a 3D convolutional neural network, and a semi-automated procedure that allows locating vertebrae centroids using traditional machine learning algorithms. Unlike other approaches, the proposed method comes with the added advantage of no requirement for single vertebrae-level annotations to be trained. A dataset of 214 CT scans has been extracted from VerSe’20 challenge data, for training, validating and testing the proposed approach. In addition, to evaluate the robustness of the segmentation and labeling algorithms, 12 CT scans from subjects affected by severe, moderate and mild scoliosis have been collected from a local medical clinic. On the designated test set from Verse’20 data, the binary spine segmentation stage allowed to obtain a binary Dice coefficient of 89.17%, whilst the vertebrae identification one reached an average multi-class Dice coefficient of 90.09%. In order to ensure the reproducibility of the algorithms hereby developed, the code has been made publicly available.


Author(s):  
Juan Lyu ◽  
Xiaojun Bi ◽  
Sunetra Banerjee ◽  
Zixun Huang ◽  
Frank H.F. Leung ◽  
...  

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Syed Furqan Qadri ◽  
Linlin Shen ◽  
Mubashir Ahmad ◽  
Salman Qadri ◽  
Syeda Shamaila Zareen ◽  
...  

Author(s):  
Liu Xia ◽  
Liu Xiao ◽  
Gan Quan ◽  
Wang Bo

Background: Automatic approach to vertebrae segmentation from computed tomography (CT) images is very important in clinical applications. As the intricate appearance and variable architecture of vertebrae across the population, cognate constructions in close vicinity, pathology, and the interconnection between vertebrae and ribs it is a challenge to propose a 3D automatic vertebrae CT image segmentation method. Objective: The purpose of this study was to propose an automatic multi-vertebrae segmentation method for spinal CT images. Methods: Firstly, CLAHE-Threshold-Expansion was preprocessed to improve image quality and reduce input voxel points. Then, 3D coarse segmentation fully convolutional network and cascaded finely segmentation convolutional neural network were used to complete multi-vertebrae segmentation and classification. Results: The results of this paper were compared with the other methods on the same datasets. Experimental results demonstrated that the Dice similarity coefficient (DSC) in this paper is 94.84%, higher than the V-net and 3D U-net. Conclusion: Method of this paper has certain advantages in automatically and accurately segmenting vertebrae regions of CT images. Due to the easy acquisition of spine CT images. It was proven to be more conducive to clinical application of treatment that uses our segmentation model to obtain vertebrae regions, combining with the subsequent 3D reconstruction and printing work.


Sign in / Sign up

Export Citation Format

Share Document