limiting chain extensibility
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
pp. 108128652110010
Author(s):  
Afshin Anssari-Benam

In constitutive modelling of rubber-like materials, the strain-hardening effect at large deformations has traditionally been captured successfully by non-Gaussian statistical molecular-based models involving the inverse Langevin function, as well as the phenomenological limiting chain extensibility models. A new model proposed by Anssari-Benam and Bucchi ( Int. J. Non Linear Mech. 2021; 128; 103626. DOI: 10.1016/j.ijnonlinmec.2020.103626), however, has both a direct molecular structural basis and the functional simplicity of the limiting chain extensibility models. Therefore, this model enjoys the benefits of both approaches: mathematical versatility, structural objectivity of the model parameters, and preserving the physical features of the network deformation such as the singularity point. In this paper we present a systematic approach to constructing the general class of this type of model. It will be shown that the response function of this class of models is defined as the [1/1] rational function of [Formula: see text], the first principal invariant of the Cauchy–Green deformation tensor. It will be further demonstrated that the model by Anssari-Benam and Bucchi is a special case within this class as a rounded [3/2] Padé approximant in [Formula: see text] (the chain stretch) of the inverse Langevin function. A similar approach for devising a general [Formula: see text] term as an adjunct to the [Formula: see text] part of the model will also be presented, for applications where the addition of an [Formula: see text] term to the strain energy function improves the fits or is otherwise required. It is concluded that compared with the Gent model, which is a [0/1] rational approximation in [Formula: see text] and has no direct connection to Padé approximations of any order in [Formula: see text], the presented new class of the molecular-based limiting chain extensibility models in general, and the proposed model by Anssari-Benam and Bucchi in specific, are more accurate representations for modelling the strain-hardening behaviour of rubber-like materials in large deformations.


2021 ◽  
pp. 096739112110033
Author(s):  
Amir Ghafouri Sayyad ◽  
Ali Imam ◽  
Shahram Etemadi Haghighi

The purpose of this paper is to investigate the torsion and azimuthal shear of an incompressible hyperelastic cylinder having a modified Gent-Thomas strain energy with limiting chain extensibility condition. First, the torsional response of the modified Gent-Thomas model is obtained analytically and compared with those of Gent-Gent, Gent-Thomas, and Carroll strain energy models where the former model incorporates the limiting chain extensibility condition while the latter two are phenomenological models. The results show the modified Gent-Thomas model to be in better agreement with the experimental data of Rivlin and Saunders on torsion than the other three models. To further evaluate the response of the modified Gent-Thomas model, azimuthal shear deformation of an incompressible hyperelastic cylinder with the modified Gent-Thomas, Gent-Thomas, Gent-Gent, and Carroll strain energies is considered, where the angular displacement in azimuthal shear is determined analytically for the first three models and numerically for the fourth model. It is shown that the strain hardening effect, predicted either by the limiting chain extensibility condition for the modified Gent-Thomas and Gent-Gent models or phenomenologically by the Carroll model, is quite significant in the azimuthal shear response of the incompressible cylinder.


2020 ◽  
Vol 32 (1) ◽  
pp. 113-123
Author(s):  
Huiming Wang ◽  
Jianpeng Yang

We employ the finite deformation theory to analyze the inhomogeneous large deformation of a heterogeneous spherical hydrogel subjected to chemo-mechanical loadings. The heterogeneous spherical hydrogel is composed of two concentric spherical hydrogel layers with different material properties. The Gent model is employed for the free energy function of the polymer stretching part in order to tackle the effect of the limiting chain extensibility. The heterogeneous spherical hydrogel is assumed to be perfectly bonded at the interface and is traction free at the external surface. At the internal surface, two boundary conditions are considered: one is internally fixed and the other is internally pressurized. Numerical examples are performed to describe the nonlinear behaviors of a heterogeneous spherical hydrogel when subjected to the swelling and mechanical loadings. For internally fixed case, numerical results show that the limiting chain extensibility and the initial swelling ratio have significant effect on the actuation deformation of a heterogeneous spherical hydrogel. For internally pressurized case, we find that the swelling-induced snap-through instability can be triggered under specified conditions. It is shown that the chemo-mechanical behaviors of the heterogeneous spherical hydrogels can be adjusted by tuning the material properties and the initial swelling ratios.


Author(s):  
K. R. Rajagopal ◽  
Giuseppe Saccomandi

In this paper, we discuss the need for models that express the stretch (or strain) as a function of stress, or implicit constitutive models that relate the stretch (or strain) and stress, for describing the elastic response of some elastomers. We would like to provide an explanation for some experimental data for elastomeric materials that imply that the material moduli depend on pressure. Included in the class of models that are proposed are those which can explain limiting chain extensibility that is exhibited by some rubber-like solids. The models that are proposed stem from a completely different starting point from that for classical elastic bodies, so that these models cannot be obtained within the context of classical theory.


Sign in / Sign up

Export Citation Format

Share Document