appalachian plateau
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 14)

H-INDEX

25
(FIVE YEARS 2)

Geosphere ◽  
2021 ◽  
Author(s):  
Luke C. Basler ◽  
Jaclyn S. Baughman ◽  
Michelle L. Fame ◽  
Peter J. Haproff

To assess spatial and temporal patterns of Phanerozoic orogenic burial and subsequent exhumation in the central Appalachian Mountains, we present mid-temperature zircon (U-Th)/He (ZHe; closure temperature [TC] = 140–200 °C) dates for 10 samples along a 225 km, strike-perpendicular transect spanning the Appalachian Plateau, Valley and Ridge, Blue Ridge, and Piedmont physiographic provinces in West Virginia and western Virginia. Ranges of single-grain ZHe dates exhibit an eastward younging trend from 455–358 Ma in the Pennsylvanian Appalachian Plateau to 336–209 Ma in the Valley and Ridge, 298–217 Ma in the Blue Ridge, and 186–121 Ma in the Piedmont. Within the Pennsylvanian Appalachian Plateau, detrital ZHe dates are older than corresponding depositional ages, thus limiting postdepositional burial temperatures to less than 160 °C. These ZHe dates capture predepositional mid-Paleozoic cooling signatures, indicating provenance from either recycled Taconic or Acadian basin strata or mid-Paleozoic Appalachian terranes. Across the Valley and Ridge and western Blue Ridge provinces, reset Permian detrital ZHe dates feature flat date-effective uranium correlations that suggest rapid Alleghanian cooling initiating prior to 270 Ma. ZHe dates within the Valley and Ridge are more than 100 m.y. older than previously reported regional apatite fission-track dates, reflecting a protracted period of stable post-Alleghanian thermal conditions within the foreland. By contrast, post-Triassic single-grain ZHe dates in the interior Piedmont document rapid postrift cooling, likely resulting from both the relaxation of an elevated geothermal gradient and exhumation from rift-flank uplift. The spatial discontinuity between stable synrift thermal conditions in the Valley and Ridge and rapid cooling in the Piedmont suggests that rift-flank uplift and cooling were concentrated outboard of the foreland within the Piedmont province.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 550
Author(s):  
Christine L. Casey ◽  
Stephen L. Rathbun ◽  
David E. Stallknecht ◽  
Mark G. Ruder

Hemorrhagic disease (HD) is considered one of the most significant infectious diseases of white-tailed deer in North America. Investigations into environmental conditions associated with outbreaks suggest drought conditions are strongly correlated with outbreaks in some regions of the United States. However, during 2017, an HD outbreak occurred in the Eastern United States which appeared to be associated with a specific physiographic region, the Appalachian Plateau, and not drought conditions. The objective of this study was to determine if reported HD in white-tailed deer in 2017 was correlated with physiographic region. There were 456 reports of HD from 1605 counties across 26 states and 12 physiographic regions. Of the 93 HD reports confirmed by virus isolation, 76.3% (71/93) were identified as EHDV-2 and 66.2% (47/71) were from the Appalachian Plateau. A report of HD was 4.4 times more likely to occur in the Appalachian Plateau than not in 2017. Autologistic regression models suggested a statistically significant spatial dependence. The underlying factors explaining this correlation are unknown, but may be related to a variety of host, vector, or environmental factors. This unique outbreak and its implications for HD epidemiology highlight the importance for increased surveillance and reporting efforts in the future.


2020 ◽  
Vol 91 (6) ◽  
pp. 3483-3495
Author(s):  
Christine A. Powell ◽  
William A. Thomas ◽  
Robert D. Hatcher

Abstract Specifying the extent and location of rifted, crystalline Precambrian crust in the eastern United States is important for seismic hazard evaluation and for models that relate upper-mantle structure to ancient tectonic features and ongoing tectonism. As currently depicted in the National Seismic Hazard Maps (NSHM), the western limit of Iapetan rifted crust is beneath the Appalachian plateau physiographic province, west of the Valley and Ridge province. New estimates of crustal thickness using EarthScope Transportable Array and other data do not support the presence of rifted crust beneath the Blue Ridge, Valley and Ridge, and Appalachian plateau physiographic provinces. Crustal thicknesses exceed 45 km throughout most of this region. The crust thins to the southeast beneath the southeastern part of the Piedmont physiographic province and is only 36 km thick near the edge of the Atlantic coastal plain. We suggest that the western limit of Iapetan rift-extended crust is east of the Blue Ridge province and is associated with the prominent Appalachian gravity gradient. This location coincides with palinspastic reconstructions based on geologic data for the Iapetan rifted margin. Recognition of thick crust beneath the Blue Ridge and Valley and Ridge provinces, unextended by Iapetan rifting, will support more robust modeling of the effects of mantle structure (such as delamination and abrupt changes in lithospheric thickness) on ongoing tectonism and earthquake activity in the eastern United States and will provide more accurate seismotectonic zonation in the NSHM.


Geosphere ◽  
2020 ◽  
Vol 16 (5) ◽  
pp. 1276-1292
Author(s):  
Daniel Lammie ◽  
Nadine McQuarrie ◽  
Peter B. Sak

Abstract We present a kinematic model for the evolution of the central Appalachian fold-thrust belt (eastern United States) along a transect through the western flank of the Pennsylvania salient. New map and strain data are used to construct a balanced geologic cross section spanning 274 km from the western Great Valley of Virginia northwest across the Burning Spring anticline to the undeformed foreland of the Appalachian Plateau of West Virginia. Forty (40) oriented samples and measurements of >300 joint orientations were collected from the Appalachian Plateau and Valley and Ridge province for grain-scale bulk finite strain analysis and paleo-stress reconstruction, respectively. The central Appalachian fold-thrust belt is characterized by a passive-roof duplex, and as such, the total shortening accommodated by the sequence above the roof thrust must equal the shortening accommodated within duplexes. Earlier attempts at balancing geologic cross sections through the central Appalachians have relied upon unquantified layer-parallel shortening (LPS) to reconcile the discrepancy in restored line lengths of the imbricated carbonate sequence and mainly folded cover strata. Independent measurement of grain-scale bulk finite strain on 40 oriented samples obtained along the transect yield a transect-wide average of 10% LPS with province-wide mean values of 12% and 9% LPS for the Appalachian Plateau and Valley and Ridge, respectively. These values are used to evaluate a balanced cross section, which shows a total shortening of 56 km (18%). Measured magnitudes of LPS are highly variable, as high as 17% in the Valley and Ridge and 23% on the Appalachian Plateau. In the Valley and Ridge province, the structures that accommodate shortening vary through the stratigraphic package. In the lower Paleozoic carbonate sequences, shortening is accommodated by fault repetition (duplexing) of stratigraphic layers. In the interval between the duplex (which repeats Cambrian through Upper Ordovician strata) and Middle Devonian and younger (Permian) strata that shortened through folding and LPS, there is a zone that is both folded and faulted. Across the Appalachian Plateau, slip is transferred from the Valley and Ridge passive-roof duplex to the Appalachian Plateau along the Wills Mountain thrust. This shortening is accommodated through faulting of Upper Ordovician to Lower Devonian strata and LPS and folding within the overlying Middle Devonian through Permian rocks. The significant difference between LPS strain (10%–12%) and cross section shortening estimates (18% shortening) highlights that shortening from major subsurface faults within the central Appalachians of West Virginia is not easily linked to shortening in surface folds. Depending on length scale over which the variability in LPS can be applied, LPS can accommodate 50% to 90% of the observed shortening; other mechanisms, such as outcrop-scale shortening, are required to balance the proposed model.


2020 ◽  
Author(s):  
D. Lammie ◽  
et al.

Plate 1. (A and B) Balanced (A) and restored (B) cross section A-A' extending from the eastern Great Valley westward to the Burning Spring anticline (Fig. 1). Total deformed length (274 km) and undeformed restored length (346 km) are measured from a pin line east of the extent of documented map-scale shortening on the Appalachian Plateau, resulting in 78 km (23%) total shortening. (C) As shown, shortening in Upper Devonian through Permian rocks assumes 10% layer-parallel shortening (LPS) in the Appalachian Plateau and across the Appalachian front (to thick vertical bar) and 25% LPS in the Valley and Ridge (region between thick vertical bars). Shortening in the Great Valley requires 35% LPS, compared to the >50% LPS measured in that region (Wright and Platt, 1982). Cross sections drawn with no vertical exaggeration; Circled numbers—duplex numbers; Fm–Formation; Gp—Group. Plate 2. Geologic cross section divided into 16 sequentially numbered intervals (circled numbers above the cross section) spanning from the western limb of the Burning Springs anticline eastward to the Great Valley. Locations of each of the 40 samples used to constrain grain-scale layer-parallel shortening (LPS) are shown as small white dots projected into the line of section; calculated LPS (as a percentage) are shown above each sample. Mean LPS values for each interval are summarized in Table 2. (A) Cross section constructed to minimize the amount of unit thickness variation in the Reedsville-Martinsburg Formations. Balancing this section requires 10% outcrop-scale shortening between the Elkins Valley anticline and the boundary between the Valley and Ridge and Great Valley. (B) Cross section constructed to minimize contributions from outcrop-scale shortening. Balancing this section requires 5% outcrop-scale shortening between the Elkins Valley anticline and the boundary between the Valley and Ridge and Great Valley. Cross sections drawn with no vertical exaggeration; circled numbers—duplex numbers; Fm—Formation; Gp—Group.


2020 ◽  
Author(s):  
D. Lammie ◽  
et al.

Plate 1. (A and B) Balanced (A) and restored (B) cross section A-A' extending from the eastern Great Valley westward to the Burning Spring anticline (Fig. 1). Total deformed length (274 km) and undeformed restored length (346 km) are measured from a pin line east of the extent of documented map-scale shortening on the Appalachian Plateau, resulting in 78 km (23%) total shortening. (C) As shown, shortening in Upper Devonian through Permian rocks assumes 10% layer-parallel shortening (LPS) in the Appalachian Plateau and across the Appalachian front (to thick vertical bar) and 25% LPS in the Valley and Ridge (region between thick vertical bars). Shortening in the Great Valley requires 35% LPS, compared to the >50% LPS measured in that region (Wright and Platt, 1982). Cross sections drawn with no vertical exaggeration; Circled numbers—duplex numbers; Fm–Formation; Gp—Group. Plate 2. Geologic cross section divided into 16 sequentially numbered intervals (circled numbers above the cross section) spanning from the western limb of the Burning Springs anticline eastward to the Great Valley. Locations of each of the 40 samples used to constrain grain-scale layer-parallel shortening (LPS) are shown as small white dots projected into the line of section; calculated LPS (as a percentage) are shown above each sample. Mean LPS values for each interval are summarized in Table 2. (A) Cross section constructed to minimize the amount of unit thickness variation in the Reedsville-Martinsburg Formations. Balancing this section requires 10% outcrop-scale shortening between the Elkins Valley anticline and the boundary between the Valley and Ridge and Great Valley. (B) Cross section constructed to minimize contributions from outcrop-scale shortening. Balancing this section requires 5% outcrop-scale shortening between the Elkins Valley anticline and the boundary between the Valley and Ridge and Great Valley. Cross sections drawn with no vertical exaggeration; circled numbers—duplex numbers; Fm—Formation; Gp—Group.


2020 ◽  
Author(s):  
D. Lammie ◽  
et al.

Plate 1. (A and B) Balanced (A) and restored (B) cross section A-A' extending from the eastern Great Valley westward to the Burning Spring anticline (Fig. 1). Total deformed length (274 km) and undeformed restored length (346 km) are measured from a pin line east of the extent of documented map-scale shortening on the Appalachian Plateau, resulting in 78 km (23%) total shortening. (C) As shown, shortening in Upper Devonian through Permian rocks assumes 10% layer-parallel shortening (LPS) in the Appalachian Plateau and across the Appalachian front (to thick vertical bar) and 25% LPS in the Valley and Ridge (region between thick vertical bars). Shortening in the Great Valley requires 35% LPS, compared to the >50% LPS measured in that region (Wright and Platt, 1982). Cross sections drawn with no vertical exaggeration; Circled numbers—duplex numbers; Fm–Formation; Gp—Group. Plate 2. Geologic cross section divided into 16 sequentially numbered intervals (circled numbers above the cross section) spanning from the western limb of the Burning Springs anticline eastward to the Great Valley. Locations of each of the 40 samples used to constrain grain-scale layer-parallel shortening (LPS) are shown as small white dots projected into the line of section; calculated LPS (as a percentage) are shown above each sample. Mean LPS values for each interval are summarized in Table 2. (A) Cross section constructed to minimize the amount of unit thickness variation in the Reedsville-Martinsburg Formations. Balancing this section requires 10% outcrop-scale shortening between the Elkins Valley anticline and the boundary between the Valley and Ridge and Great Valley. (B) Cross section constructed to minimize contributions from outcrop-scale shortening. Balancing this section requires 5% outcrop-scale shortening between the Elkins Valley anticline and the boundary between the Valley and Ridge and Great Valley. Cross sections drawn with no vertical exaggeration; circled numbers—duplex numbers; Fm—Formation; Gp—Group.


Sign in / Sign up

Export Citation Format

Share Document