calcium transporter
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 15)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
Lisanne M. M. Gommers ◽  
Jenny van der Wijst ◽  
Caro Bos ◽  
Luuk A. M. Janssen ◽  
René J. M. Bindels ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258433
Author(s):  
Supathra Phoaubon ◽  
Kornkamon Lertsuwan ◽  
Jarinthorn Teerapornpuntakit ◽  
Narattaphol Charoenphandhu

Abnormal calcium absorption and iron overload from iron hyperabsorption can contribute to osteoporosis as found in several diseases, including hemochromatosis and thalassemia. Previous studies in thalassemic mice showed the positive effects of the iron uptake suppressor, hepcidin, on calcium transport. However, whether this effect could be replicated in other conditions is not known. Therefore, this study aimed to investigate the effects of hepcidin on iron and calcium uptake ability under physiological, iron uptake stimulation and calcium uptake suppression. To investigate the potential mechanism, effects of hepcidin on the expression of iron and calcium transporter and transport-associated protein in Caco-2 cells were also determined. Our results showed that intestinal cell iron uptake was significantly increased by ascorbic acid together with ferric ammonium citrate (FAC), but this phenomenon was suppressed by hepcidin. Interestingly, hepcidin significantly increased calcium uptake under physiological condition but not under iron uptake stimulation. While hepcidin significantly suppressed the expression of iron transporter, it had no effect on calcium transporter expression. This indicated that hepcidin-induced intestinal cell calcium uptake did not occur through the stimulation of calcium transporter expression. On the other hand, 1,25(OH)2D3 effectively induced intestinal cell calcium uptake, but it did not affect intestinal cell iron uptake or iron transporter expression. The 1,25(OH)2D3-induced intestinal cell calcium uptake was abolished by 12 mM CaCl2; however, hepcidin could not rescue intestinal cell calcium uptake suppression by CaCl2. Taken together, our results showed that hepcidin could effectively and concurrently induce intestinal cell calcium uptake while reducing intestinal cell iron uptake under physiological and iron uptake stimulation conditions, suggesting its therapeutic potential for inactive calcium absorption, particularly in thalassemic patients or patients who did not adequately respond to 1,25(OH)2D3.


2021 ◽  
Vol 15 (6) ◽  
pp. e0009442
Author(s):  
Alejandro Marin-Lopez ◽  
Junjun Jiang ◽  
Yuchen Wang ◽  
Yongguo Cao ◽  
Tyler MacNeil ◽  
...  

Dengue virus (DENV) is a flavivirus that causes marked human morbidity and mortality worldwide, and is transmitted to humans by Aedes aegypti mosquitoes. Habitat expansion of Aedes, mainly due to climate change and increasing overlap between urban and wild habitats, places nearly half of the world’s population at risk for DENV infection. After a bloodmeal from a DENV-infected host, the virus enters the mosquito midgut. Next, the virus migrates to, and replicates in, other tissues, like salivary glands. Successful viral transmission occurs when the infected mosquito takes another blood meal on a susceptible host and DENV is released from the salivary gland via saliva into the skin. During viral dissemination in the mosquito and transmission to a new mammalian host, DENV interacts with a variety of vector proteins, which are uniquely important during each phase of the viral cycle. Our study focuses on the interaction between DENV particles and protein components in the A. aegypti vector. We performed a mass spectrometry assay where we identified a set of A. aegypti salivary gland proteins which potentially interact with the DENV virion. Using dsRNA to silence gene expression, we analyzed the role of these proteins in viral infectivity. Two of these candidates, a synaptosomal-associated protein (AeSNAP) and a calcium transporter ATPase (ATPase) appear to play a role in viral replication both in vitro and in vivo, observing a ubiquitous expression of these proteins in the mosquito. These findings suggest that AeSNAP plays a protective role during DENV infection of mosquitoes and that ATPase protein is required for DENV during amplification within the vector.


JCI Insight ◽  
2021 ◽  
Author(s):  
William E. Ackerman IV ◽  
Catalin S. Buhimschi ◽  
Ali Snedden ◽  
Taryn L. Summerfield ◽  
Guomao Zhao ◽  
...  

Author(s):  
Miguel Macias-González ◽  
Maria Jose Truco ◽  
Rongkui Han ◽  
Sylvie Jenni ◽  
Richard W Michelmore

Abstract Tipburn is an important physiological disorder of lettuce, Lactuca sativa L., related to calcium deficiency that can result in leaf necrosis and unmarketable crops. The major quantitative trait locus, qTPB5.2, can account for up to 70% of the phenotypic variance for tipburn incidence in the field. This quantitative trait locus was genetically dissected to identify candidate genes for tipburn by creating lines with recombination events within the quantitative trait locus and assessing their resistance to tipburn. By comparing lines with contrasting haplotypes, the genetic region was narrowed down to ∼877 Kb that was associated with a reduction of tipburn by ∼60%. Analysis of the lettuce reference genome sequence revealed 12 genes in this region, one of which is a calcium transporter with a single nucleotide polymorphism in an exon between haplotypes with contrasting phenotypes. RNA-seq analysis of recombinants revealed two genes that were differentially expressed between contrasting haplotypes consistent with the tipburn phenotype. One encodes a Teosinte branched1/Cycloidea/Proliferating Cell factor transcription factor; however, differential expression of the calcium transporter was not detected. The phenotypic data indicated that there is a second region outside of the ∼877 Kb region but within the quantitative trait locus, at which a haplotype from the susceptible parent decreased tipburn by 10 to 20%. A recombinant line was identified with beneficial haplotypes in each region from both parents that showed greater tipburn resistance than the resistant parent; this line could be used as the foundation for breeding cultivars with more resistance than is currently available.


2021 ◽  
Vol 224 (6) ◽  
pp. jeb237891
Author(s):  
Nathaly Hernández-Díaz ◽  
Francisca Leal ◽  
Martha Patricia Ramírez-Pinilla

ABSTRACTAn exceptional case of parallel evolution between lizards and eutherian mammals occurs in the evolution of viviparity. In the lizard genus Mabuya, viviparity provided the environment for the evolution of yolk-reduced eggs and obligate placentotrophy. One major event that favored the evolution of placentation was the reduction of the eggshell. As with all oviparous reptiles, lizard embryos obtain calcium from both the eggshell and egg yolk. Therefore, the loss of the eggshell likely imposes a constraint for the conservation of the egg yolk, which can only be obviated by the evolution of alternative mechanisms for the transport of calcium directly from the mother. The molecular and cellular mechanisms employed to solve these constraints, in a lizard with only a rudimentary eggshell such as Mabuya, are poorly understood. Here, we used RT-qPCR on placental and uterine samples during different stages of gestation in Mabuya, and demonstrate that transcripts of the calcium transporters trpv6, cabp28k, cabp9k and pmca are expressed and gradually increase in abundance through pregnancy stages, reaching their maximum expression when bone mineralization occurs. Furthermore, CABP28K/9K proteins were studied by immunofluorescence, demonstrating expression in specific regions of the mature placenta. Our results indicate that the machinery for calcium transportation in the Mabuya placenta was co-opted from other tissues elsewhere in the vertebrate bodyplan. Thus, the calcium transportation machinery in the placenta of Mabuya evolved in parallel with the mammalian placenta by redeploying the expression of similar calcium transporter genes.


2020 ◽  
Author(s):  
Qiangbo Liu ◽  
Yanglin Ding ◽  
Yiting Shi ◽  
Liang Ma ◽  
Yi Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document