poison gland
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 4)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 51 (3) ◽  
pp. 250-254
Author(s):  
Jefferson G. SODRÉ ◽  
Talles R. COLAÇO-FERNANDES ◽  
Lúcia H. RAPP PY-DANIEL ◽  
José L. O. BIRINDELLI ◽  
Jansen ZUANON

ABSTRACT Acanthodoras is the only genus of catfish known to secrete a conspicuous and abundant milky-looking substance through an axillary pore located just below the base of the posterior cleithral process. Despite this remarkable feature, there is no published information on the anatomical structures that produce the secretion and its possible biological/ecological functions. Dissection and histological analysis of preserved specimens of A. spinosissimus revealed the presence of a saccular axillary gland with large, binuclear secretory cells, similar to those found in other poisonous catfish. Secretory cells near the lumen appear to lose nuclei and become filled with secretory products, possibly with proteinaceous elements, as indicated by their eosinophilic appearance. As far as we know, the saccular morphology of the gland appears to constitute a unique characteristic of Acanthodoras among Doradidae catfishes. Further studies are necessary to determine the chemical composition of the secretion, as well as its possible uses by the catfish in its natural environment.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Simon Tragust ◽  
Claudia Herrmann ◽  
Jane Häfner ◽  
Ronja Braasch ◽  
Christina Tilgen ◽  
...  

Animals continuously encounter microorganisms that are essential for health or cause disease. They are thus challenged to control harmful microbes while allowing the acquisition of beneficial microbes. This challenge is likely especially important for social insects with respect to microbes in food, as they often store food and exchange food among colony members. Here we show that formicine ants actively swallow their antimicrobial, highly acidic poison gland secretion. The ensuing acidic environment in the stomach, the crop, can limit the establishment of pathogenic and opportunistic microbes ingested with food and improve the survival of ants when faced with pathogen contaminated food. At the same time, crop acidity selectively allows acquisition and colonization by Acetobacteraceae, known bacterial gut associates of formicine ants. This suggests that swallowing of the poison in formicine ants acts as a microbial filter and that antimicrobials have a potentially widespread but so far underappreciated dual role in host-microbe interactions.


Author(s):  
Simon Tragust ◽  
Claudia Herrmann ◽  
Jane Häfner ◽  
Ronja Braasch ◽  
Christina Tilgen ◽  
...  

AbstractAnimals continuously encounter microorganisms that are essential for health or cause disease. They are thus challenged to control harmful microbes while allowing acquisition of beneficial microbes. This challenge is likely especially important for social insects with respect to microbes in food, as they often store food and exchange food among colony members. Here we show that formicine ants actively swallow their antimicrobial, highly acidic poison gland secretion. The ensuing acidic environment in the stomach, the crop, limits establishment of pathogenic and opportunistic microbes ingested with food and improves survival of ants when faced with pathogen contaminated food. At the same time, crop acidity selectively allows acquisition and colonization by Acetobacteraceae, known bacterial gut associates of formicine ants. This suggests that swallowing of the poison gland secretion acts as a microbial filter in formicine ants and indicates a potentially widespread but so far underappreciated dual role of antimicrobials in host-microbe interactions.


2017 ◽  
Vol 4 (1) ◽  
pp. 65-69
Author(s):  
Menderes Suicmez ◽  
◽  
Mustafa Duran ◽  
Kasim Ozmen ◽  
◽  
...  
Keyword(s):  

2009 ◽  
Vol 57 (8) ◽  
pp. 3128-3133 ◽  
Author(s):  
Jian Chen ◽  
Charles L. Cantrell ◽  
Han-wu Shang ◽  
Maria G. Rojas

2001 ◽  
Vol 61 (1) ◽  
pp. 95-106 ◽  
Author(s):  
F. C. ABDALLA ◽  
C. da CRUZ-LANDIM

Associated to the sting apparatus of the aculeate hymenopterans is found the poison gland, originated from the glands associated to the ovipositor of the non-aculeate hymenopterans and the less derived Dufour gland, homologue of the coletterial gland of other insects, and found in all hymenopteran females. The Dufour gland functions is mostly uncertain in hymenopterans but in ants it is involved with communication and defense and in non social bees with the nest building and protection. In wasps possibly with kin-recognition. Differences in morphology and chemical composition of the gland secretion were observed among species, in the same species, between the castes in the social species and among individual of the same caste playing different tasks or belonging to different nest. Its original function of egg-protective substance producing, or favoring the oviposition, appear to have been replaced or complemented in hymenopterans by the production of semiochemicals with function in communication.


Sign in / Sign up

Export Citation Format

Share Document